Biology Letters
Restricted accessAnimal behaviour

Simple rules guide dragonfly migration

Martin Wikelski

Martin Wikelski

Department of Ecology and Evolutionary Biology, Princeton UniversityPrinceton, NJ 08544, USA

[email protected]

Google Scholar

Find this author on PubMed

, ,
James S Adelman

James S Adelman

Department of Ecology and Evolutionary Biology, Princeton UniversityPrinceton, NJ 08544, USA

Google Scholar

Find this author on PubMed

, ,
David S Wilcove

David S Wilcove

Department of Ecology and Evolutionary Biology, Princeton UniversityPrinceton, NJ 08544, USA

Woodrow Wilson School, Princeton UniversityPrinceton, NJ 08544, USA

Google Scholar

Find this author on PubMed

and
Michael L May

Michael L May

Department of Entomology, Rutgers UniversityNew Brunswick, NJ 08901, USA

Google Scholar

Find this author on PubMed

    Every year billions of butterflies, dragonflies, moths and other insects migrate across continents, and considerable progress has been made in understanding population-level migratory phenomena. However, little is known about destinations and strategies of individual insects. We attached miniaturized radio transmitters (ca 300 mg) to the thoraxes of 14 individual dragonflies (common green darners, Anax junius) and followed them during their autumn migration for up to 12 days, using receiver-equipped Cessna airplanes and ground teams. Green darners exhibited distinct stopover and migration days. On average, they migrated every 2.9±0.3 days, and their average net advance was 58±11 km in 6.1±0.9 days (11.9±2.8 km d−1) in a generally southward direction (186±52°). They migrated exclusively during the daytime, when wind speeds were less than 25 km h−1, regardless of wind direction, but only after two nights of successively lower temperatures (decrease of 2.1±0.6 °C in minimum temperature). The migratory patterns and apparent decision rules of green darners are strikingly similar to those proposed for songbirds, and may represent a general migration strategy for long-distance migration of organisms with high self-propelled flight speeds.

    References


    • Arnaud P.H. 1972 Mass movement of Sympetrum corruotum (Hagen) (Odonata: Libellulidae) in central California. Pan-Pac. Entomol 48, 75–76. ISIGoogle Scholar
    • Artiss T. 2004 Phylogeography of a facultatively migratory dragonfly, Libellula quadrimaculata (Odonata: Anisoptera). Hydrobiologia 515, 225–234.doi:10.1023/B:HYDR.0000027332.57786.9d. Crossref, ISIGoogle Scholar
    • Berthold P. 1993 Bird migration, a general survey. Oxford, UK:Oxford University Press. Google Scholar
    • Bowlin M.S, Cochran W.W& Wikelski M. 2005 Biotelemetry of New World thrushes during migration: physiology, energetics and orientation in the wild. Integr. Comp. Biol 45, 295–304.doi:10.1093/icb/45.2.295. Crossref, PubMed, ISIGoogle Scholar
    • Chen R.L, Bao X.Z, Drake V.A, Farrow R.A, Wang S.Y, Sun Y.J& Zhai B.P. 1989 Radar observations of the spring migration into northeastern China of the oriental armyworm moth, Mythimna separata, and other insects. Ecol. Entomol 14, 149–162. Crossref, ISIGoogle Scholar
    • Childs B.S. 1974 The Book of Exodus: a critical theological commentary. Philadelphia, PA:Westminster Press. Google Scholar
    • Cochran W.W& Wikelski M. 2005 Individual migratory tactics of New World Catharus thrushes: current knowledge and future tracking options from space. , Greenberg R& Marra P.PIn Birds of two worlds: the ecology and evolution of migration Baltimore, MD:Johns Hopkins University Press 274–289. Google Scholar
    • Cochran W.W, Mouritsen H& Wikelski M. 2004 Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304, 405–408.doi:10.1126/science.1095844. Crossref, PubMed, ISIGoogle Scholar
    • Corbet P.S. 1999 Dragonflies. Behavior and ecology of Odonata. Ithaca, NY:Cornell University Press. Google Scholar
    • Drake V.A& Farrow R.A. 1988 The influence of atmospheric structure and motions on insect migration. Annu. Rev. Entomol 33, 183–210.doi:10.1146/annurev.en.33.010188.001151. Crossref, ISIGoogle Scholar
    • Freeland J.R, May M, Lodge R& Conrad K.F. 2003 Genetic diversity and widespread haplotypes in a migratory dragonfly, the common green darner Anax junius. Ecol. Entomol 28, 413–421.doi:10.1046/j.1365-2311.2003.00521.x. Crossref, ISIGoogle Scholar
    • Hedin J& Ranius T. 2002 Using radio telemetry to study dispersal of the beetle Osmoderma eremita, an inhabitant of tree hollows. Comp. Electron. Agric 35, 171–180.doi:10.1016/S0168-1699(02)00017-0. Crossref, ISIGoogle Scholar
    • Johnson C.G. 1969 Migration and dispersal of insects by flight. London, UK:Metheun. Google Scholar
    • Kormondy E.J. 1961 Territoriality and dispersal in dragonflies (Odonata). J. N. Y. Entomol. Soc 69, 42–52. Google Scholar
    • Lorch P.D, Sword G.A, Gwynne D.T& Anderson G.L. 2005 Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations. Ecol. Entomol 30, 548–555.doi:10.1111/j.0307-6946.2005.00725.x. Crossref, ISIGoogle Scholar
    • MacLeod A, Evans H.F& Baker R.H.A. 2002 An analysis of pest risk from an Asian longhorn beetle (Anoplophora glabripennis) to hardwood trees in the European community. Crop Protect 21, 635–645.doi:10.1016/S0261-2194(02)00016-9. Crossref, ISIGoogle Scholar
    • Macy R.W. 1949 On a migration of Tarnetrum corruptum (Hagen) (Odonata) in Western Oregon. Can. Entomol 81, 50–51. CrossrefGoogle Scholar
    • Malcolm S.B. 1987 Monarch butterfly migration in North America—controversy and conservation. Trends Ecol. Evol 2, 135–138.doi:10.1016/0169-5347(87)90055-3. Crossref, PubMed, ISIGoogle Scholar
    • May M.L. 1995 Dependence of flight behavior and heat production on air temperature in the green garner dragonfly Anax junius (Odonata: Aeshnidae). J. Exp. Biol 198, 2385–2392. Crossref, PubMed, ISIGoogle Scholar
    • Moskowitz D, Moskowitz J, Moskowitz S& Moskowitz H. 2001 Notes on a large dragonfly and butterfly migration in New Jersey. Northeast. Nat 8, 483–490. Crossref, ISIGoogle Scholar
    • Naef-Daenzer D.F, Stalder M, Wetli P& Weise E. 2005 Miniaturization (0.2 g) and evaluation of attachment techniques of telemetry transmitters. J. Exp. Biol 208, 4063–4068.doi:10.1242/jeb.01870. Crossref, PubMed, ISIGoogle Scholar
    • Opler P.A. 1971 Mass movement of Tarnetrum corruptum (Odonata: Libellulidae). Pan-Pac. Entomol 47, 223. ISIGoogle Scholar
    • Pedgley D.E. 1993 Managing migratory insect pests—a review. Int. J. Pest Manage 39, 3–12. Crossref, ISIGoogle Scholar
    • Reynolds D.R& Riley J.R. 2002 Remote-sensing, telemetric and computer-based technologies for investigating insect movement: a survey of existing and potential techniques. Comput. Electron. Agric 35, 271–307.doi:10.1016/S0168-1699(02)00023-6. Crossref, ISIGoogle Scholar
    • Riley J.R, Reynolds D.R, Smith A.D, Edwards A.S, Zhang X.X, Cheng X.N, Wang H.K, Cheng J.Y& Zhai B.P. 1995 Observations of the autumn migration of the rice leaf-roller Cnaphalocrocis medinalis (Lepidoptera, Pyralidae) and other moths in eastern China. Bull. Entomol. Res 85, 397–414. Crossref, ISIGoogle Scholar
    • Russell, R. W. 2005 Interactions between migrating birds and offshore oil and gas platforms in the Northern Gulf of Mexico. Final Report, US Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. Google Scholar
    • Russell R.W, May M.L, Soltesz K.L& Fitzpatrick J.W. 1998 Massive swarm migrations of dragonflies (Odonata) in eastern North America. Am. Midl. Nat 140, 325–342. Crossref, ISIGoogle Scholar
    • Showers W.B. 1997 Migratory ecology of the black cutworm. Annu. Rev. Entomol 42, 393–425.doi:10.1146/annurev.ento.42.1.393. Crossref, PubMed, ISIGoogle Scholar
    • Simpkin J.L, Britten H.B& Brussard P.F. 2000 Effects of habitat fragmentation and differing mobility on the population structures of a Great Basin dragonfly (Sympetrum corruptum) and damselfly (Enallagma carcunculatum). West. North Am. Nat 60, 320–332. ISIGoogle Scholar
    • Sprandel G.L. 2001 Fall dragonfly (Odonata) and butterfly (Lepidoptera) migration at St. Joseph Peninsula, Gulf County, Florida. Florida Entomol 84, 234–238. Crossref, ISIGoogle Scholar
    • Srygley R.B. 2003 Wind drift compensation in migrating dragonflies Pantala (Odonata: Libellulidae). J. Insect Behav 16, 217–232.doi:10.1023/A:1023915802067. Crossref, ISIGoogle Scholar
    • Swenson G.W, Wikelski M& Smith J.ATracking very low-power ground transmitters from near Earth orbitIn Proc. IEEE Int. Geosciences and Remote Sensing Symp. Anchorage, Alaska, 19–24 September 2004 (2004). Google Scholar
    • Sword G.A, Lorch P.D& Gwynne D.T. 2005 Migratory bands give crickets protection. Nature 433, 703 doi:10.1038/433703a. Crossref, PubMed, ISIGoogle Scholar
    • Taylor L.R. 1986 Synoptic dynamics, migration and the Rothamsted Insect Survey—Presidential Address to the British Ecological Society, December 1984. J. Anim. Ecol 55, 1–23. Crossref, ISIGoogle Scholar
    • Taylor G.K. 2001 Mechanics and aerodynamics of insect flight control. Biol. Rev 76, 449–471. Crossref, PubMed, ISIGoogle Scholar
    • Turner P.E. 1965 Migration of the dragonfly, Tarnetrum corruptum (Hagen). Pan-Pac. Entomol 41, 66–67. Google Scholar
    • Wakeling J.M& Ellington C.P. 1997 Dragonfly flight. 2. Velocities, accelerations and kinematics of flapping flight. J. Exp. Biol 200, 557–582. Crossref, PubMed, ISIGoogle Scholar
    • Walker T.J& Littell R.C. 1994 Orientation of fall migrating butterflies in north peninsular Florida and source areas. Ethology 98, 60–84. Crossref, ISIGoogle Scholar
    • Wiedner D.S, Kerlinger P, Sibley D.A, Holt P, Hough J& Crossley R. 1992 Visible morning flight of Neotropical landbird migrants at Cape May, New Jersey. Auk 109, 500–510. ISIGoogle Scholar
    • Wikelski M, Tarlow E.M, Raim A, Diehl R.H, Larkin R.P& Visser G.H. 2003 Costs of migration in free-flying songbirds. Nature 423, 704 doi:10.1038/423704a. Crossref, PubMed, ISIGoogle Scholar
    • Williams C.B. 1957 Insect migration. Annu. Rev. Entomol 2, 163–180.doi:10.1146/annurev.en.02.010157.001115. Crossref, ISIGoogle Scholar