Abstract
Biofuels production from microalgae attracts much attention but remains an unproven technology. We explore routes to enhance production through modifications to a range of generic microalgal physiological characteristics. Our analysis shows that biofuels production may be enhanced ca fivefold through genetic modification (GM) of factors affecting growth rate, respiration, photoacclimation, photosynthesis efficiency and the minimum cell quotas for nitrogen and phosphorous (N : C and P : C). However, simulations indicate that the ideal GM microalgae for commercial deployment could, on escape to the environment, become a harmful algal bloom species par excellence, with attendant risks to ecosystems and livelihoods. In large measure, this is because an organism able to produce carbohydrate and/or lipid at high rates, providing stock metabolites for biofuels production, will also be able to attain a stoichiometric composition that will be far from optimal as food for the support of zooplankton growth. This composition could suppress or even halt the grazing activity that would otherwise control the microalgal growth in nature. In consequence, we recommend that the genetic manipulation of microalgae, with inherent consequences on a scale comparable to geoengineering, should be considered under strict international regulation.
Footnotes
References
- 1
Smith B, Greenwell HC& Whiting A . 2009 Catalytic upgrading of tri-glycerides and fatty acids to transport biofuels. Energy Environ. Sci. 2, 262–271.doi:10.1039/b814123a (doi:10.1039/b814123a). Crossref, Web of Science, Google Scholar - 2
Chen CY, Yeh KL, Aisyah R, Lee DJ& Chang JS . 2011 Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour. Technol. 102, 71–81.doi:10.1016/j.biortech.2010.06.159 (doi:10.1016/j.biortech.2010.06.159). Crossref, PubMed, Web of Science, Google Scholar - 3
Chisti Y . 2007 Biodiesel from microalgae. Biotech. Adv. 25, 294–306.doi:10.1016/j.biotechadv.2007.02.001 (doi:10.1016/j.biotechadv.2007.02.001). Crossref, PubMed, Web of Science, Google Scholar - 4
Wijffels RH& Barbosa MJ . 2010 An outlook on microalgal biofuels. Science 329, 796–799.doi:10.1126/science.1189003 (doi:10.1126/science.1189003). Crossref, PubMed, Web of Science, Google Scholar - 5
Greenwell HC, Laurens LM, Shields RJ, Lovitt RW& Flynn KJ . 2010 Placing microalgae on the biofuels priority list: a review of the technological challenges. J. R. Soc. Interface 6, 703–726.doi:10.1098/rsif.2009.0322 (doi:10.1098/rsif.2009.0322). Link, Web of Science, Google Scholar - 6
Williams PJle-B& Laurens LML . 2010 Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 3, 554–590.doi:10.1039/b924978h (doi:10.1039/b924978h). Crossref, Web of Science, Google Scholar - 7
Shirvani T, Yan X, Inderwildi OR, Edwards P& King DA . 2011 Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy Environ. Sci. 4, 3773–3778.doi:10.1039/c1ee01791h (doi:10.1039/c1ee01791h). Crossref, Web of Science, Google Scholar - 8
Flynn KJ, Greenwell HC, Lovitt RW& Shields RJ . 2010 Selection for fitness at the individual or population levels: modeling effects of genetic modifications in microalgae on productivity and environmental safety. J. Theor. Biol. 263, 269–280.doi:10.1016/j.jtbi.2009.12.021 (doi:10.1016/j.jtbi.2009.12.021). Crossref, PubMed, Web of Science, Google Scholar - 9
Beer LL, Boyd ES, Peters JW& Posewitz MC . 2009 Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotech. 20, 264–271.doi:10.1016/j.copbio.2009.06.002 (doi:10.1016/j.copbio.2009.06.002). Crossref, PubMed, Web of Science, Google Scholar - 10
Li Y, Han D, Hu G, Sommerfeld M& Hu Q . 2010 Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 107, 258–268.doi:10.1002/bit.22807 (doi:10.1002/bit.22807). Crossref, PubMed, Web of Science, Google Scholar - 11
Radakovits R, Jinkerson RE, Darzins A& Posewitz MC . 2010 Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell 9, 486–501.doi:10.1128/EC.00364-09 (doi:10.1128/EC.00364-09). Crossref, PubMed, Google Scholar - 12
Courchesne NM, Parisien A, Wang B& Lan CQ . 2009 Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 141, 31–41.doi:10.1016/j.jbiotec.2009.02.018 (doi:10.1016/j.jbiotec.2009.02.018). Crossref, PubMed, Web of Science, Google Scholar - 13
Hallegraeff GM . 1998 Transport of toxic dinoflagellates via ships’ ballast water: bioeconomic risk assessment and efficacy of possible ballast water management strategies. Mar. Ecol. Prog. Ser. 168, 297–309.doi:10.3354/meps168297 (doi:10.3354/meps168297). Crossref, Web of Science, Google Scholar - 14
Fasham MJR, Flynn KJ, Pondaven P, Anderson TR& Boyd PW . 2006 Development of a robust ecosystem model to predict the role of iron on biogeochemical cycles: a comparison of results for iron-replete and iron-limited areas, and the SOIREE iron-enrichment experiment. Deep Sea Res. I 53, 333–366.doi:10.1016/j.dsr.2005.09.011 (doi:10.1016/j.dsr.2005.09.011). Crossref, Google Scholar - 15
Flynn KJ . 2001 A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton. J. Plankton Res. 23, 977–997.doi:10.1093/plankt/23.9.977 (doi:10.1093/plankt/23.9.977). Crossref, Web of Science, Google Scholar - 16
Flynn KJ . 2008 The importance of the form of the quota curve and control of non-limiting nutrient transport in phytoplankton models. J. Plankton Res. 30, 423–438.doi:10.1093/plankt/fbn007 (doi:10.1093/plankt/fbn007). Crossref, Web of Science, Google Scholar - 17
Flynn KJ . 2003 Modelling multi-nutrient interactions in phytoplankton; balancing simplicity and realism. Prog. Oceanogr. 56, 249–279.doi:10.1016/S0079-6611(03)00006-5 (doi:10.1016/S0079-6611(03)00006-5). Crossref, Web of Science, Google Scholar - 18
John EH& Flynn KJ . 2002 Modelling changes in paralytic shellfish toxin content of dinoflagellates in response to nitrogen and phosphorus supply. Mar. Ecol. Prog. Ser. 225, 147–160.doi:10.3354/meps225147 (doi:10.3354/meps225147). Crossref, Web of Science, Google Scholar - 19
Flynn KJ . 2008 Use, abuse, misconceptions and insights from quota models: the Droop cell-quota model 40 years on. Oceanogr. Mar. Biol. Annu. Rev. 46, 1–23.doi:10.1201/9781420065756.ch1 (doi:10.1201/9781420065756.ch1). Crossref, Web of Science, Google Scholar - 20
Flynn KJ, Clark DR& Xue Y . 2008 Modelling the release of dissolved organic matter by phytoplankton. J. Phycol. 44, 1171–1187.doi:10.1111/j.1529-8817.2008.00562.x (doi:10.1111/j.1529-8817.2008.00562.x). Crossref, PubMed, Web of Science, Google Scholar - 21
Flynn KJ, Marshall H& Geider RJ . 2001 A comparison of two N-irradiance models of phytoplankton growth. Limnol. Oceanogr. 46, 1794–1802.doi:10.4319/lo.2001.46.7.1794 (doi:10.4319/lo.2001.46.7.1794). Crossref, Web of Science, Google Scholar - 22
Geider RJ& La Roche J . 2002 Redfield revisited: variability of C : N : P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17.doi:10.1017/S0967026201003456 (doi:10.1017/S0967026201003456). Crossref, Web of Science, Google Scholar - 23
Sarmineto JL& Gruber N . 2006 Ocean biogeochemical dynamics. Princeton, NJ: Princeton University Press. Crossref, Google Scholar - 24
Guillard RLL& Ryther JH . 1962 Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Grans. Can. J. Microbiol. 8, 229–239.doi:10.1139/m62-029 (doi:10.1139/m62-029). Crossref, PubMed, Web of Science, Google Scholar - 25
Melis A . 2009 Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antenna to maximize efficiency. Plant Sci. 177, 272–280.doi:10.1016/j.plantsci.2009.06.005 (doi:10.1016/j.plantsci.2009.06.005). Crossref, Web of Science, Google Scholar - 26
Flynn KJ . 2009 Going for the slow burn: why should possession of a low maximum growth rate be advantageous for microalgae? Plant Ecol. Divers. 2, 179–189.doi:10.1080/17550870903207268 (doi:10.1080/17550870903207268). Crossref, Web of Science, Google Scholar - 27
Flynn KJ& Hipkin CR . 1999 Interactions between iron, light, ammonium and nitrate; insights from the construction of a dynamic model of algal physiology. J. Phycol. 35, 1171–1190.doi:10.1046/j.1529-8817.1999.3561171.x (doi:10.1046/j.1529-8817.1999.3561171.x). Crossref, Web of Science, Google Scholar - 28
Anning T, Macintyre HL, Pratt SM, Sammes PJ, Gibb S& Geider RJ . 2000 Photoacclimation in the marine diatom Skeletonema costatum. Limnol. Oceanogr. 45, 1807–1817.doi:10.4319/lo.2000.45.8.1807 (doi:10.4319/lo.2000.45.8.1807). Crossref, Web of Science, Google Scholar - 29
Beckmann J, Lehrb F, Finazzic G, Hankamerd B, Postenb C, Wobbee L& Krusea O . 2009 Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J. Biotechnol. 142, 70–77.doi:10.1016/j.jbiotec.2009.02.015 (doi:10.1016/j.jbiotec.2009.02.015). Crossref, PubMed, Web of Science, Google Scholar - 30
Geider RJ, Macintyre HL& Kana TM . 1998 A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43, 679–694.doi:10.4319/lo.1998.43.4.0679 (doi:10.4319/lo.1998.43.4.0679). Crossref, Web of Science, Google Scholar - 31
Macintyre HL, Kana TM, Anning T& Geider RJ . 2002 Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J. Phycol. 38, 17–38.doi:10.1046/j.1529-8817.2002.00094.x (doi:10.1046/j.1529-8817.2002.00094.x). Crossref, Web of Science, Google Scholar - 32
Shi T, Bibby TS, Jiang L, Irwin AJ& Falkowski PG . 2005 Protein interactions limit the rate of evolution of photosynthetic genes in cyanobacteria. Mol. Biol. Evol. 22, 2179–2189.doi:10.1093/molbev/msi216 (doi:10.1093/molbev/msi216). Crossref, PubMed, Web of Science, Google Scholar - 33
Liu X, Sheng J& Curtiss R . 2011 Fatty acid production in genetically modified cyanobacteria. Proc. Natl Acad. Sci. USA 108, 6899–6904.doi:10.1073/pnas.1103014108 (doi:10.1073/pnas.1103014108). Crossref, PubMed, Web of Science, Google Scholar - 34
Flynn KJ . 2002 How critical is the critical N : P ratio? J. Phycol. 38, 961–970.doi:10.1046/j.1529-8817.2002.t01-1-01235.x (doi:10.1046/j.1529-8817.2002.t01-1-01235.x). Crossref, Web of Science, Google Scholar - 35
Mitra A . 2006 A multi-nutrient model for the description of stoichiometric modulation of predation (SMP) in micro- and mesozooplankton. J. Plankton Res. 28, 597–611.doi:10.1093/plankt/fbi144 (doi:10.1093/plankt/fbi144). Crossref, Web of Science, Google Scholar - 36
Mitra A, Flynn KJ& Fasham MJR . 2007 Accounting correctly for grazing dynamics in nutrient-phytoplankton–zooplankton models. Limnol. Oceanogr. 52, 649–661.doi:10.4319/lo.2007.52.2.0649 (doi:10.4319/lo.2007.52.2.0649). Crossref, Web of Science, Google Scholar - 37
Sterner RW& Elser JJ . 2002 Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton, NJ: Princeton University Press. Google Scholar - 38
Grover JP . 2003 The impact of variable stoichiometry on predator–prey interactions: a multinutrient approach. Am. Nat. 162, 29–43.doi:10.1086/376577 (doi:10.1086/376577). Crossref, PubMed, Web of Science, Google Scholar - 39
Mitra A& Flynn KJ . 2005 Predator–prey interactions: is ‘ecological stoichiometry’ sufficient when good food goes bad? J. Plankton Res. 27, 393–399.doi:10.1093/plankt/fbi022 (doi:10.1093/plankt/fbi022). Crossref, Web of Science, Google Scholar - 40
James GO, Hocartb CH, Hilliera W, Chena H, Kordbacheha F, Pricea GD& Djordjevica MA . 2011 Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour. Technol. 102, 3343–3351.doi:10.1016/j.biortech.2010.11.051 (doi:10.1016/j.biortech.2010.11.051). Crossref, PubMed, Web of Science, Google Scholar - 41
Radakovits M, Eduafo PM& Posewitz MC . 2011 Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab. Eng. 13, 89–95.doi:10.1016/j.ymben.2010.10.003 (doi:10.1016/j.ymben.2010.10.003). Crossref, PubMed, Web of Science, Google Scholar - 42
Lei A, Chen H, Shen G, Hu Z, Chen L& Wang J . 2012 Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol. Biofuels 5, 18.doi:10.1186/1754-6834-5-18 (doi:10.1186/1754-6834-5-18). Crossref, PubMed, Web of Science, Google Scholar - 43
Droop MR . 1968 Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth, and inhibition in Monochrysis lutheri. J. Mar. Biol. Assoc. UK 48, 689–733.doi:10.1017/S0025315400019238 (doi:10.1017/S0025315400019238). Crossref, Web of Science, Google Scholar - 44
Droop MR . 1974 The nutrient status of algal cells in continuous culture. J. Mar. Biol. Assoc. UK 54, 825–855.doi:10.1017/S002531540005760X (doi:10.1017/S002531540005760X). Crossref, Web of Science, Google Scholar - 45
Clarens AF, Resurreccion EP, White MA& Colosi LM . 2010 Environmental life cycle comparison of algae to other bioenergy feedstock. Environ. Sci. Technol. 44, 1813–1819.doi:10.1021/es902838n (doi:10.1021/es902838n). Crossref, PubMed, Web of Science, Google Scholar - 46
Cordell D, Drangert J& White S . 2009 The story of phosphorus: global food security and food for thought. Global Environ. Change 19, 292–305.doi:10.1016/j.gloenvcha.2008.10.009 (doi:10.1016/j.gloenvcha.2008.10.009). Crossref, Web of Science, Google Scholar - 47
Liu H, Laws EA, Villareal TA& Buskey EJ . 2001 Nutrient limited growth of Aureoumbra lagunensis (Pelagophyceae), with implications for its capability to outgrow other phytoplankton species in phosphate-limited environments. J. Phycol. 37, 500–508.doi:10.1046/j.1529-8817.2001.037004500.x (doi:10.1046/j.1529-8817.2001.037004500.x). Crossref, Web of Science, Google Scholar - 48
Dalsgaard J, St John M, Kattner G, Müller-Navarra D& Hagen W . 2003 Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340.doi:10.1016/S0065-2881(03)46005-7 (doi:10.1016/S0065-2881(03)46005-7). Crossref, PubMed, Web of Science, Google Scholar - 49
Mitra A& Flynn KJ . 2006 Promotion of harmful algal blooms by zooplankton predatory activity. Biol. Lett. 2, 194–197.doi:10.1098/rsbl.2006.0447 (doi:10.1098/rsbl.2006.0447). Link, Web of Science, Google Scholar - 50
Granéli E& Flynn KJ . 2006 Chemical and physical factors influencing toxin production. Ecology of harmful algae, vol. 189. Ecological studies (eds, Granéli E& Turner JT ), pp. 229–241. Berlin, Germany: Springer. Google Scholar - 51
Jones RH& Flynn KJ . 2005 Nutritional status and diet composition affect the value of diatoms as copepod prey. Science 307, 1457–1459.doi:10.1126/science.1107767 (doi:10.1126/science.1107767). Crossref, PubMed, Web of Science, Google Scholar - 52
Spijkerman E& Wacker A . 2011 Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga. Extremophiles 15, 597–609.doi:10.1007/s00792-011-0390-3 (doi:10.1007/s00792-011-0390-3). Crossref, PubMed, Web of Science, Google Scholar - 53
Myklestad SM . 1995 Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci. Total Environ. 165, 155–164.doi:10.1016/0048-9697(95)04549-G (doi:10.1016/0048-9697(95)04549-G). Crossref, Web of Science, Google Scholar - 54
Schilling K& Zessner M . 2011 Foam in the aquatic environment. Water Res. 45, 4355–4366.doi:10.1016/j.watres.2011.06.004 (doi:10.1016/j.watres.2011.06.004). Crossref, PubMed, Web of Science, Google Scholar - 55
Seuront L, Vincent D& Mitchell JG . 2006 Biologically induced modification of seawater viscosity in the Eastern English channel during a Phaeocystis globosa spring bloom. J. Mar. Syst. 61, 118–133.doi:10.1016/j.jmarsys.2005.04.010 (doi:10.1016/j.jmarsys.2005.04.010). Crossref, Web of Science, Google Scholar - 56
Tilman D, 2009 Beneficial biofuels—the food, energy, and environment trilemma. Science 325, 270–271.doi:10.1126/science.1177970 (doi:10.1126/science.1177970). Crossref, PubMed, Web of Science, Google Scholar - 57
Glibert PM, Anderson DM, Gentian P, Graneli E& Sellner KG . 2005 The global complex phenomena of harmful algal blooms. Oceanography 18, 137–147. Google Scholar - 58
Padilla DK& Williams SL . 2004 Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front. Ecol. Environ. 2, 131–138.doi:10.1890/1540-9295(2004)002[0131:BBWAAO]2.0.CO;2 (doi:10.1890/1540-9295(2004)002[0131:BBWAAO]2.0.CO;2). Crossref, Web of Science, Google Scholar - 59
McNaughton P& Owen R . 2012 Environmental science: good governance for geoengineering. Nature 479, 293.doi:10.1038/479293a (doi:10.1038/479293a). Crossref, Web of Science, Google Scholar