Journal of The Royal Society Interface
Restricted accessResearch articles

Does a ‘turbophoretic’ effect account for layer concentrations of insects migrating in the stable night-time atmosphere?

A.M Reynolds

A.M Reynolds

Biomathematics Department, Rothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK

[email protected]

Google Scholar

Find this author on PubMed

,
D.R Reynolds

D.R Reynolds

Plant and Invertebrate Ecology Department, Rothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK

Natural Resources Institute, University of GreenwichChatham, Kent ME4 4TB, UK

Google Scholar

Find this author on PubMed

and
J.R Riley

J.R Riley

Plant and Invertebrate Ecology Department, Rothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK

Google Scholar

Find this author on PubMed

    Large migrating insects, such as noctuid moths and acridoid grasshoppers, flying within the stable nocturnal boundary layer commonly become concentrated into horizontal layers. These layers frequently occur near the top of the surface temperature inversion where warm fast-moving airflows provide good conditions for downwind migration. On some occasions, a layer may coincide with a higher altitude temperature maximum such as a subsidence inversion, while on others, it may seem unrelated to any obvious feature in the vertical profile of meteorological variables. Insects within the layers are frequently orientated, either downwind or at an angle to the wind, but the mechanisms involved in both layer formation and common orientation have remained elusive. Here, we show through the results of numerical simulations that if insects are treated as neutrally buoyant particles, they tend to be advected by vertical gusts (through the ‘turbophoretic’ mechanism) into layers in the atmosphere where the turbulent kinetic energy has local minima. These locations typically coincide with local maxima in the wind speed and/or air temperature, and they may also provide cues for orientation. However, the degree of layering predicted by this model is very much weaker than that observed in the field. We have therefore hypothesized that insects behave in a way that amplifies the turbophoretic effect by initiating climbs or descents in response to vertical gusts. New simulations incorporating this behaviour demonstrated the formation of layers that closely mimic field observations, both in the degree of concentration in layers and the rate at which they form.

    References

    • Alisse J.-R& Sidi C. 2000 Experimental probability density functions of small-scale fluctuations in the stably stratified atmosphere. J. Fluid Mech. 402, 137–162.doi:10.1017/S0022112099006813. . Crossref, Web of ScienceGoogle Scholar
    • Basu S& Porté-Agel F. 2006 Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J. Atmos. Sci. 63, 2074–2091.doi:10.1175/JAS3734.1. . Crossref, Web of ScienceGoogle Scholar
    • Beerwinkle K.R, Lopez J.D, Witz J.A, Schleider P.G, Eyster R.S& Lingren P.D. 1994 Seasonal radar and meteorological observations associated with nocturnal insect flight at altitudes to 900 metres. Environ. Entomol. 23, 676–683. Crossref, Web of ScienceGoogle Scholar
    • Brown A.R, Derbyshire S.H& Mason P.J. 1994 Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Q. J. R. Meteorol. Soc. 120, 1485–1512.doi:10.1002/qj.49712052004. . Crossref, Web of ScienceGoogle Scholar
    • Burt P.J.A& Pedgley D.E. 1997 Nocturnal insect migration: effects of local winds. Adv. Ecol. Res. 27, 61–92. Crossref, Web of ScienceGoogle Scholar
    • Campistron B. 1975 Characteristic distributions of angel echoes in the lower atmosphere and their meteorological implications. Bound.-Layer Meteorol. 9, 411–426.doi:10.1007/BF00223391. . CrossrefGoogle Scholar
    • Chapman J.W, Smith A.D, Woiwod I.P, Reynolds D.R& Riley J.R. 2002 Development of vertical-looking radar technology for monitoring insect migration. Comput. Electron. Agric. 35, 95–110.doi:10.1016/S0168-1699(02)00013-3. . Crossref, Web of ScienceGoogle Scholar
    • Chapman J.W, Reynolds D.R, Mouritsen H, Hill J.K, Riley J.R, Sivell D, Smith A.D& Woiwod I.P. 2008 Wind selection and drift compensation optimise migratory pathways in a high-flying moth. Curr. Biol. 18, 514–518.doi:10.1016/j.cub.2008.02.080. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Csanady G.T. 1963 Turbulent diffusion of heavy particles in the atmosphere. J. Atmos. Sci. 20, 201–208.doi:10.1175/1520-0469(1963)020<0201:TDOHPI>2.0.CO;2. . Crossref, Web of ScienceGoogle Scholar
    • Drake V.A. 1983 Collective orientation by nocturnally migrating Australian plague locusts, Chortoicetes terminifera (Walker) (Orthoptera Acrididae): a radar study. Bull. Entomol. Res. 73, 679–692. Crossref, Web of ScienceGoogle Scholar
    • Drake V.A. 1984 The vertical distribution of macro-insects migrating in the nocturnal boundary layer: a radar study. Bound.-Layer Meteorol. 28, 353–374.doi:10.1007/BF00121314. . Crossref, Web of ScienceGoogle Scholar
    • Drake V.A Solitary wave disturbances of the nocturnal boundary layer revealed by radar observations of migrating insects. Bound.-Layer Meteorol. 31, 1985a 269–286.doi:10.1007/BF00120896. . Crossref, Web of ScienceGoogle Scholar
    • Drake V.A Radar observations of moths migrating in a nocturnal low-level jet. Ecol. Entomol. 10, 1985b 259–265.doi:10.1111/j.1365-2311.1985.tb00722.x. . Crossref, Web of ScienceGoogle Scholar
    • Drake V.A& Farrow R.A. 1988 The influence of atmospheric structure and motions on insect migration. Annu. Rev. Entomol. 33, 183–210.doi:10.1146/annurev.en.33.010188.001151. . Crossref, Web of ScienceGoogle Scholar
    • Drake, V. A. & Rochester, W. A. 1994 The formation of layer concentrations by migrating insects. In Proc. 21st Conference on Agricultural and Forest Meteorology–11th Conference on Biometeorology, San Diego, California, 7–11 March 1994, pp. 411–414. Boston, MA: American Meteorological Society. Google Scholar
    • Dudley R The biomechanics and functional diversity of flight. Insect movement: mechanisms and consequences , Woiwod I.P, Reynolds D.R& Thomas C.D. 2001pp. 1–18. Eds. Wallingford, UK:CAB International. Google Scholar
    • Farrow R.A Flight and migration in acridoids. Biology of grasshoppers , Chapman R.F& Joern A. 1990pp. 227–314. Eds. New York, NY:Wiley. Google Scholar
    • Feng H.-Q, Wu K.-M, Cheng D.-F& Guo Y.-Y. 2004 Spring migration and summer dispersal of Loxostege sticticalis (Lepidoptera: Pyralidae) and other insects observed with radar in northern China. Environ. Entomol. 33, 1253–1265. Crossref, Web of ScienceGoogle Scholar
    • Feng H.-Q, Wu K.-M, Ni Y.-X, Cheng D.-F& Guo Y.-Y. 2005 High-altitude windborne transport of Helicoverpa armigera (Lepidoptera: Noctuidae) in mid-summer in northern China. J. Insect Behav. 18, 335–349.doi:10.1007/s10905-005-3694-2. . Crossref, Web of ScienceGoogle Scholar
    • Gatehouse A.G. 1997 Behavior and ecological genetics of wind-borne migration by insects. Ann. Rev. Entomol. 42, 475–502.doi:10.1146/annurev.ento.42.1.475. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Gossard, E. E. & Chadwick, R. B. 1979 Studies of insects by high resolution radar. In Proc. 14th Conference on Agriculture and Forest Meteorology and 4th Conference on Biometeorology, Minneapolis, Minnesota, 2–6 April 1979, pp. 268–271. Boston, MA: American Meteorological Society. Google Scholar
    • Greenbank D.O, Schaefer G.W& Rainey R.C. 1980 Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar, and aircraft. Mem. Entomol. Soc. Can. 110, 1–49. Crossref, Web of ScienceGoogle Scholar
    • Hobbs S.E& Wolf W.W. 1989 An airborne radar technique for studying insect migration. Bull. Entomol. Res. 79, 693–704. Crossref, Web of ScienceGoogle Scholar
    • Kosovic B& Curry J.A. 2000 A large eddy simulation of quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci. 57, 1297–1304. Crossref, Web of ScienceGoogle Scholar
    • Maxey M.R. 1990 On the advection of spherical and non-spherical particles in a non-uniform flow. Phil. Trans. R. Soc. A. 333, 289–307.doi:10.1098/rsta.1990.0162. . AbstractGoogle Scholar
    • Nappo C.J An introduction to atmospheric gravity waves. 2002 Amsterdam, The Netherlands:Elsevier. Google Scholar
    • Nieuwstadt F.T.M. 1984 The turbulent structure of the stable, boundary layer. J. Atmos. Sci. 41, 2202–2216.doi:10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2. . Crossref, Web of ScienceGoogle Scholar
    • Reeks M.W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol. Sci. 14, 729–739.doi:10.1016/0021-8502(83)90055-1. . Crossref, Web of ScienceGoogle Scholar
    • Reynolds A.M. 2004 Stokes number effects in Lagrangian stochastic models of dispersed two-phase flows. J. Colloid Interface Sci. 275, 328–335.doi:10.1016/j.jcis.2004.02.039. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Reynolds D.R& Riley J.R. 1988 A migration of grasshoppers, particularly Diabolocatantops axillaris (Thunberg) (Orthoptera: Acrididae), in the West African Sahel. Bull. Entomol. Res. 78, 251–271. Crossref, Web of ScienceGoogle Scholar
    • Reynolds, D. R. & Riley, J. R. 1997 The flight behaviour and migration of insect pests: radar studies in developing countries, NRI Bulletin no. 71. Chatham, UK: Natural Resources Institute. Google Scholar
    • Reynolds D.R, Chapman J.W, Edwards A.S, Smith A.D, Wood C.R, Barlow J.F& Woiwod I.P. 2005 Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations. Bull. Entomol. Res. 95, 259–274.doi:10.1079/BER2004358. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Reynolds D.R, Smith A.D& Chapman J.W. 2008 A radar study of emigratory flight and layer formation by insects at dawn over southern Britain. Bull. Entomol. Res. 98, 35–52.doi:10.1017/S0007485307005470. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Richter J.H, Jensen D.R, Noonkester V.R, Kreasky J.B, Stimmann M.W& Wolf W.W. 1973 Remote radar sensing: atmospheric structure and insects. Science. 180, 1176–1178.doi:10.1126/science.180.4091.1176. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Riley, J. R. 1989 Orientation by high-flying insects at night: observations and theories. In Orientation and navigation—birds, humans and other animals. Papers presented at the Conference of the Royal Institute of Navigation, Cardiff, 6–8 April 1989. London, UK: The Royal Institute of Navigation. Google Scholar
    • Riley J.R& Reynolds D.R. 1979 Radar-based studies of the migratory flight of grasshoppers in the middle Niger area of Mali. Proc. R. Soc. B. 204, 67–82.doi:10.1098/rspb.1979.0013. . Link, Web of ScienceGoogle Scholar
    • Riley J.R& Reynolds D.R Orientation at night by high-flying insects. Insect flight: dispersal and migration & Danthanarayana W. 1986pp. 71–87. Eds. Berlin, Germany:Springer. CrossrefGoogle Scholar
    • Riley J.R, Cheng X.N, Zhang X.X, Reynolds D.R, Xu G.M, Smith A.D, Cheng J.Y, Bao A.D& Zhai B.P. 1991 The long distance migration of Nilaparvata lugens (Stål) (Delphacidae) in China: radar observations of mass return flight in the autumn. Ecol. Entomol. 16, 471–489.doi:10.1111/j.1365-2311.1991.tb00240.x. . Crossref, Web of ScienceGoogle Scholar
    • Riley J.R, Reynolds D.R, Smith A.D, Edwards A.S, Zhang X.-X, Cheng X.-N, Wang H.-K, Cheng J.-Y& Zhai B.-P. 1995 Observations of the autumn migration of the rice leaf roller Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and other moths in eastern China. Bull. Entomol. Res. 85, 397–414. Crossref, Web of ScienceGoogle Scholar
    • Salmond J.A& McKendry I.G. 2005 A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality. Prog. Phys. Geogr. 29, 171–188.doi:10.1191/0309133305pp442ra. . Crossref, Web of ScienceGoogle Scholar
    • Sane S.P, Dieudonne A, Willis M.A& Daniel T.L. 2007 Antennal mechanosensors mediate flight control in moths. Science. 315, 863–866.doi:10.1126/science.1133598. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Schaefer G.W Radar observations of insect flight. Insect flight & Rainey R.C. 1976pp. 157–197. Eds. Oxford, UK:Blackwell. Google Scholar
    • Thomson D.J. 1989 Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529–556.doi:10.1017/S0022112087001940. . Crossref, Web of ScienceGoogle Scholar
    • Vaughn C.R. 1985 Birds and insects as radar targets: a review. Proc. Inst. Electr. Electron. Eng. 73, 205–227. Crossref, Web of ScienceGoogle Scholar
    • Weil, J. C., Patton, E. G. & Sullivan, P. P. 2006 Lagrangian modeling of dispersion in the stable boundary layer. In Proc. 17th Symposium on Boundary Layers and Turbulence, San Diego, 21–25 May 2006 (paper J3.4). Boston, MA: American Meteorological Society. Google Scholar
    • Westbrook, J. K., Wolf, W. W., Pair, S. D., Sparks, A. N. & Raulston, J. R. 1987 Empirical moth flight behavior in the nocturnal planetary boundary layer. In Proc. 18th Conference on Agricultural and Forest Meteorology–8th Conference on Biometeorology and Aerobiology, W. Layfayette, Indiana, 15–18 September 1987, pp. 263–264. Boston, MA: American Meteorological Society. Google Scholar
    • Wolf W.W, Westbrook J.K& Sparks A.N Relationships between radar entomological measurements and atmospheric structure in south Texas during March and April 1982. Long-range migration of moths of agronomic importance to the United States and Canada: specific examples of the occurrence and synoptic weather patterns conducive to migration & Sparks A.N. 1986pp. 84–97. Eds. Washington, DC:US Department of Agriculture, Agricultural Research Service ARS-43. Google Scholar
    • Wolf W.W, Westbrook J.K, Raulston J, Pair S.D& Hobbs S.E. 1990 Recent airborne radar observations of migrant pests in the United States. Phil. Trans. R. Soc. B. 328, 619–630.doi:10.1098/rstb.1990.0132. . Link, Web of ScienceGoogle Scholar
    • Wood C.R, Chapman J.W, Reynolds D.R, Barlow J.F, Smith A.D& Woiwod I.P. 2006 The influence of the atmospheric boundary layer on nocturnal layers of moths migrating over southern Britain. Int. J. Biometeorol. 50, 193–204.doi:10.1007/s00484-005-0014-7. . Crossref, PubMed, Web of ScienceGoogle Scholar