Abstract
Transportation networks play a crucial role in human mobility, the exchange of goods and the spread of invasive species. With 90 per cent of world trade carried by sea, the global network of merchant ships provides one of the most important modes of transportation. Here, we use information about the itineraries of 16 363 cargo ships during the year 2007 to construct a network of links between ports. We show that the network has several features that set it apart from other transportation networks. In particular, most ships can be classified into three categories: bulk dry carriers, container ships and oil tankers. These three categories do not only differ in the ships' physical characteristics, but also in their mobility patterns and networks. Container ships follow regularly repeating paths whereas bulk dry carriers and oil tankers move less predictably between ports. The network of all ship movements possesses a heavy-tailed distribution for the connectivity of ports and for the loads transported on the links with systematic differences between ship types. The data analysed in this paper improve current assumptions based on gravity models of ship movements, an important step towards understanding patterns of global trade and bioinvasion.
References
Albert R.& Barabási A.-L. . 2002 Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97. (doi:10.1103/RevModPhys.74.47). Crossref, Web of Science, Google ScholarBarabási A.-L.& Albert R. . 1999 Emergence of scaling in random networks. Science 286, 509–512. (doi:10.1126/science.286.5439.509). Crossref, PubMed, Web of Science, Google ScholarBarrat A., Barthélemy M., Pastor-Satorras R.& Vespignani A. . 2004 The architecture of complex weighted networks. Proc. Natl Acad. Sci. USA 101, 3747–3752. (doi:10.1073/pnas.0400087101). Crossref, PubMed, Web of Science, Google ScholarBarthélemy M.& Flammini A. . 2008 Modeling urban street patterns. Phys. Rev. Lett. 100, 138 702. (doi:10.1103/PhysRevLett.100.138702). Crossref, Web of Science, Google ScholarBoguña M.& Pastor-Satorras R. . 2002 Epidemic spreading in correlated complex networks. Phys. Rev. E 66, 047 104. (doi:10.1103/PhysRevE.66.047104). Crossref, Web of Science, Google ScholarBuhl J., Gautrais J., Reeves N., Solé R. V., Valverde S., Kuntz P.& Theraulaz G. . 2006 Topological patterns in street networks of self-organized urban settlements. Eur. Phys. J. B 49, 513–522. (doi:10.1140/epjb/e2006-00085-1). Crossref, Web of Science, Google ScholarBurnham K. P.& Anderson D. R. . 1998 Model selection and multimodel inference. A practical information-theoretic approach. New York, NY: Springer. Google ScholarCarlton J. T.& Geller J. B. . 1993 Ecological roulette: the global transport of nonindigenous marine organisms. Science 261, 78–82. (doi:10.1126/science.261.5117.78). Crossref, PubMed, Web of Science, Google ScholarClauset A., Shalizi C. R.& Newman M. E. J. . 2009 Power-law distributions in empirical data. SIAM Rev. 51, 661–703. (doi:10.1137/070710111). Crossref, Web of Science, Google ScholarCohen A. N.& Carlton J. T. . 1998 Accelerating invasion rate in a highly invaded estuary. Science 279, 555–558. (doi:10.1126/science.279.5350.555). Crossref, PubMed, Web of Science, Google ScholarColizza V., Barrat A., Barthélemy M.& Vespignani A. . 2006 The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl Acad. Sci. USA 103, 2015–2020. (doi:10.1073/pnas.0510525103). Crossref, PubMed, Web of Science, Google ScholarDrake J. M.& Lodge D. M. . 2004 Global hot spots of biological invasions: evaluating options for ballast-water management. Proc. R. Soc. Lond. B 271, 575–580. (doi:10.1098/rspb.2003.2629). Link, Web of Science, Google ScholarDrake J. M.& Lodge D. M. . 2007 Hull fouling is a risk factor for intercontinental species exchange in aquatic ecosystems. Aquat. Invasions 2, 121–131. (doi:10.3391/ai.2007.2.2.7). Crossref, Google ScholarFlahault A., Letrait S., Blin P., Hazout S., Ménarés J.& Valleron A. J. . 1988 Modelling the 1985 influenza epidemic in France. Stat. Med. 7, 1147–1155. (doi:10.1002/sim.4780071107). Crossref, PubMed, Web of Science, Google ScholarFortunato S.& Barthelemy M. . 2007 Resolution limit in community detection. Proc. Natl Acad. Sci. USA 104, 36–41. (doi:10.1073/pnas.0605965104). Crossref, PubMed, Web of Science, Google ScholarFreeman L. C. . 1979 Centrality in social networks I: conceptual clarification. Soc. Netw. 1, 215–239. (doi:10.1016/0378-8733(78)90021-7). Crossref, Web of Science, Google ScholarGross T.& Blasius B. . 2008 Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271. (doi:10.1098/rsif.2007.1229). Link, Web of Science, Google ScholarGuimerà R.& Amaral L. A. N. . 2004 Modeling the world-wide airport network. Eur. Phys. J. B 38, 381–385. (doi:10.1140/epjb/e2004-00131-0). Crossref, Web of Science, Google ScholarGuimerà R., Sales-Pardo M.& Amaral L. A. N. . 2004 Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70, 025 101(R). (doi:10.1103/PhysRevE.70.025101). Crossref, Web of Science, Google ScholarGuimerà R., Mossa S., Turtschi A.& Amaral L. A. N. . 2005 The worldwide air transportation network: anomalous centrality, community structure, and cities' global roles. Proc. Natl Acad. Sci. USA 102, 7794–7799. (doi:10.1073/pnas.0407994102). Crossref, PubMed, Web of Science, Google ScholarHaynes K. E.& Fotheringham A. S. . 1984 Gravity and spatial interaction models. Beverly Hills, CA: Sage. Google ScholarHu Y.& Zhu D. . 2009 Empirical analysis of the worldwide maritime transportation network. Phys. A 388, 2061–2071. (doi:10.1016/j.physa.2008.12.016). Crossref, Web of Science, Google ScholarHufnagel L., Brockmann D.& Geisel T. . 2004 Forecast and control of epidemics in a globalized world. Proc. Natl Acad. Sci. USA 101, 15 124–15 129. (doi:10.1073/pnas.0308344101). Crossref, Web of Science, Google Scholar- International Maritime Organization. 2006 International shipping and world trade. Facts and figures. See http://www.imo.org/. Google Scholar
Latora V.& Marchiori M. . 2002 Is the Boston subway a small-world network? Phys. A 314, 109–113. (doi:10.1016/S0378-4371(02)01089-0). Crossref, Web of Science, Google ScholarLeicht E. A.& Newman M. E. J. . 2008 Community structure in directed networks. Phys. Rev. Lett. 100, 118 703. (doi:10.1103/PhysRevLett.100.118703). Crossref, Web of Science, Google ScholarLounibos L. P. . 2002 Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47, 233–266. (doi:10.1146/annurev.ento.47.091201.145206). Crossref, PubMed, Web of Science, Google ScholarMack R. N., Simberloff D., Lonsdale W. M., Evans H., Clout M.& Bazzaz F. A. . 2000 Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710. (doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2). Crossref, Web of Science, Google ScholarMilo R., Shen-Orr S., Itzkovitz S., Kashtan N., Chklovskii D.& Alon U. . 2002 Network motifs: simple building blocks of complex networks. Science 298, 824–827. (doi:10.1126/science.298.5594.824). Crossref, PubMed, Web of Science, Google ScholarMilo R., Itzkovitz S., Kashtan N., Levitt R., Shen-Orr S., Ayzenshtat I., Sheffer M.& Alon U. . 2004 Superfamilies of evolved and designed networks. Science 303, 1538–1542. (doi:10.1126/science.1089167). Crossref, PubMed, Web of Science, Google ScholarNewman M. E. J. . 2002 Assortative mixing in networks. Phys. Rev. Lett. 89, 208701. (doi:10.1103/PhysRevLett.89.208701). Crossref, PubMed, Web of Science, Google ScholarNewman M. E. J. . 2003 a The structure and function of complex networks. SIAM Rev. 45, 167–256. (doi:10.1137/S003614450342480). Crossref, Web of Science, Google ScholarNewman M. E. J. . 2003 b Properties of highly clustered networks. Phys. Rev. E 68, 026 121. (doi:10.1103/PhysRevE.68.026121). Crossref, Web of Science, Google ScholarNewman M. E. J. . 2004 Who is the best connected scientist? A study of scientific coauthorship networks. Complex networks (eds, Ben-Naim E., Frauenfelder H.& Toroczkai Z. ), pp. 337–370. Berlin, Germany: Springer. Google ScholarNewman M. E. J. . 2005 Power laws, Pareto distributions and Zipf's law. Contemp. Phys. 46, 323–351. (doi:10.1080/00107510500052444). Crossref, Web of Science, Google ScholarNotteboom T. E. . 2004 Container shipping and ports: an overview. Rev. Netw. Econ. 3, 86–106. (doi:10.2202/1446-9022.1045). Crossref, Google ScholarPastor-Satorras R.& Vespignani A. . 2001 Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203. (doi:10.1103/PhysRevLett.86.3200). Crossref, PubMed, Web of Science, Google ScholarPimentel D., Zuniga R.& Morrison D. . 2005 Update on the environmental costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288. (doi:10.1016/j.ecolecon.2004.10.002). Crossref, Web of Science, Google ScholarRobinson R. . 1998 Asian hub/feeder nets: the dynamics of restructuring. Marit. Policy Manag. 25, 21–40. (doi:10.1080/03088839800000043). Crossref, Google ScholarRodrigue J.-P., Comtois C.& Slack B. . 2006 The geography of transport systems. London, UK: Routledge. Google ScholarRuiz G. M., Rawlings T. K., Dobbs F. C., Drake L. A., Mullady T., Huq A.& Colwell R. R. . 2000 Global spread of microorganisms by ships. Nature 408, 49–50. (doi:10.1038/35040695). Crossref, PubMed, Web of Science, Google ScholarRvachev L. A.& Longini I. M. . 1985 A mathematical model for the global spread of influenza. Math. Biosci. 75, 3–22. (doi:10.1016/0025-5564(85)90064-1). Crossref, Google ScholarSen P., Dasgupta S., Chatterjee A., Sreeram P. A., Mukherjee G.& Manna S. S. . 2003 Small-world properties of the Indian railway network. Phys. Rev. E 67, 036 106. (doi:10.1103/PhysRevE.67.036106). Crossref, Web of Science, Google ScholarTatem A. J., Hay S. I.& Rogers D. J. . 2006 Global traffic and disease vector dispersal. Proc. Natl Acad. Sci. USA 103, 6242–6247. (doi:10.1073/pnas.0508391103). Crossref, PubMed, Web of Science, Google Scholar- United Nations Conference on Trade and Development. 2007 Review of maritime transport. See http://www.unctad.org/en/docs/rmt2007_en.pdf. Google Scholar
Warton D. I., Wright I. J., Falster D. S.& Westoby M. . 2006 Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291. (doi:10.1017/S1464793106007007). Crossref, PubMed, Web of Science, Google ScholarWatts D. J.& Strogatz S. H. . 1998 Collective dynamics of ‘small-world’ networks. Nature 393, 440–442. (doi:10.1038/30918). Crossref, PubMed, Web of Science, Google ScholarWei T., Deng G.& Wu P. . 2007 Analysis of network effect in port and shipping system characterized by scale-free network. Proc. Int. Conf. on Intelligent Systems and Knowledge Engineering. Amsterdam, The Netherlands: Atlantic Press. Google ScholarZachcial M.& Heideloff C. . 2001 ISL shipping statistics yearbook 2001. Technical report, Institute of Shipping Economics and Logistics, Bremen, Germany. Google Scholar