In vivo optic nerve head biomechanics: performance testing of a three-dimensional tracking algorithm
Abstract
Measurement of optic nerve head (ONH) deformations could be useful in the clinical management of glaucoma. Here, we propose a novel three-dimensional tissue-tracking algorithm designed to be used in vivo. We carry out preliminary verification of the algorithm by testing its accuracy and its robustness. An algorithm based on digital volume correlation was developed to extract ONH tissue displacements from two optical coherence tomography (OCT) volumes of the ONH (undeformed and deformed). The algorithm was tested by applying artificial deformations to a baseline OCT scan while manipulating speckle noise, illumination and contrast enhancement. Tissue deformations determined by our algorithm were compared with the known (imposed) values. Errors in displacement magnitude, orientation and strain decreased with signal averaging and were 0.15 µm, 0.15° and 0.0019, respectively (for optimized algorithm parameters). Previous computational work suggests that these errors are acceptable to provide in vivo characterization of ONH biomechanics. Our algorithm is robust to OCT speckle noise as well as to changes in illumination conditions, and increasing signal averaging can produce better results. This algorithm has potential be used to quantify ONH three-dimensional strains in vivo, of benefit in the diagnosis and identification of risk factors in glaucoma.
References
- 1
Quigley HA& Broman AT . 2006 The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90, 262–267. (doi:10.1136/bjo.2005.081224). Crossref, PubMed, Web of Science, Google Scholar - 2
Sigal IA, Roberts MD, Girard MJA, Burgoyne CF& Downs JC . 2009 Biomechanical changes of the optic disc. Ocular disease: mechanisms and management. New York, NY: Elsevier. Google Scholar - 3
Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J& Singh K . 1991 Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. Baltimore Eye Survey Arch. Ophthalmol. 109, 1090–1105. (doi:10.1001/archopht.1991.01080080050026). PubMed, Web of Science, Google Scholar - 4
Leske MC, Wu SY, Hennis A, Honkanen R& Nemesure B . 2008 Risk factors for incident open-angle glaucoma: the Barbados eye studies. Ophthalmology 115, 85–93. (doi:10.1016/j.ophtha.2007.03.017). Crossref, PubMed, Web of Science, Google Scholar - 5
Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B& Hussein M . 2002 Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch. Ophthalmol. 120, 1268–1279. (doi:10.1001/archopht.120.10.1268). Crossref, PubMed, Google Scholar - 6
Maier PC, Funk J, Schwarzer G, Antes G& Falck-Ytter YT . 2005 Treatment of ocular hypertension and open angle glaucoma: meta-analysis of randomised controlled trials. BMJ 331, 134. (doi:10.1136/bmj.38506.594977.E0). Crossref, PubMed, Google Scholar - 7
Leske MC . 2007 Open-angle glaucoma—an epidemiologic overview. Ophthal. Epidemiol. 14, 166–172. (doi:10.1080/09286580701501931). Crossref, PubMed, Web of Science, Google Scholar - 8
Burgoyne CF, Downs JC, Bellezza AJ, Suh JK& Hart RT . 2005 The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 24, 39–73. (doi:10.1016/j.preteyeres.2004.06.001). Crossref, PubMed, Web of Science, Google Scholar - 9
Hommer A, Fuchsjager-Mayrl G, Resch H, Vass C, Garhofer G& Schmetterer L . 2008 Estimation of ocular rigidity based on measurement of pulse amplitude using pneumotonometry and fundus pulse using laser interferometry in glaucoma. Invest. Ophthalmol. Vis. Sci. 49, 4046–4050. (doi:10.1167/iovs.07-1342). Crossref, PubMed, Web of Science, Google Scholar - 10
Girard MJ, Suh JK, Bottlang M, Burgoyne CF& Downs JC . 2009 Scleral biomechanics in the aging monkey eye. Invest. Ophthalmol. Vis. Sci. 50, 5226–5237. (doi:10.1167/iovs.08-3363). Crossref, PubMed, Web of Science, Google Scholar - 11
Girard MJ, Suh JK, Bottlang M, Burgoyne CF& Downs JC . 2011 Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest. Ophthalmol. Vis. Sci. 52, 5656–5669. (doi:10.1167/iovs.10-6927). Crossref, PubMed, Web of Science, Google Scholar - 12
Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA& Nguyen TD . 2012 Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest. Ophthalmol. Vis. Sci. 53, 1714–1728. (doi:10.1167/iovs.11-8009). Crossref, PubMed, Web of Science, Google Scholar - 13
Strouthidis NG, Fortune B, Yang H, Sigal IA& Burgoyne CF . 2011 Effect of acute intraocular pressure elevation on the monkey optic nerve head as detected by spectral domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52, 9431–9437. (doi:10.1167/iovs.11-7922). Crossref, PubMed, Web of Science, Google Scholar - 14
Grytz R, Sigal IA, Ruberti JW, Meschke G& Downs JC . 2012 Lamina cribrosa thickening in early glaucoma predicted by a microstructure motivated growth and remodeling approach. Mech. Mater. 44, 99–109. (doi:10.1016/j.mechmat.2011.07.004). Crossref, PubMed, Web of Science, Google Scholar - 15
Fazio MA, Grytz R, Bruno L, Girard MJ, Gardiner S, Girkin CA& Downs JC . 2012 Regional variations in mechanical strain in the posterior human sclera. Invest. Ophthalmol. Vis. Sci. 53, 5326–5333. (doi:10.1167/iovs.12-9668). Crossref, PubMed, Web of Science, Google Scholar - 16
Girard MJ, Dahlmann-Noor A, Rayapureddi S, Bechara JA, Bertin BM, Jones H, Albon J, Khaw PT& Ethier CR . 2012 Quantitative mapping of scleral fiber orientation in normal rat eyes. Invest. Ophthalmol. Vis. Sci. 52, 9684–9693. (doi:10.1167/iovs.11-7894). Crossref, Web of Science, Google Scholar - 17
Sigal IA, Flanagan JG, Lathrop KL, Tertinegg I& Bilonick R . 2012 Human lamina cribrosa insertion and age. Invest. Ophthalmol. Vis. Sci. 53, 6870–6879. (doi:10.1167/iovs.12-9890). Crossref, PubMed, Web of Science, Google Scholar - 18
Sigal IA, Bilonick RA, Kagemann L, Wollstein G, Ishikawa H, Schuman JS& Grimm JL . 2012 The optic nerve head as a robust biomechanical system. Invest. Ophthalmol. Vis. Sci. 53, 2658–2667. (doi:10.1167/iovs.11-9303). Crossref, PubMed, Web of Science, Google Scholar - 19
Grytz R, Meschke G& Jonas JB . 2011 The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech. Model Mechanobiol. 10, 371–382. (doi:10.1007/s10237-010-0240-8). Crossref, PubMed, Web of Science, Google Scholar - 20
Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H& Burgoyne CF . 2012 Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 52, 7109–7121. (doi:10.1167/iovs.11-7448). Crossref, Web of Science, Google Scholar - 21
Strouthidis NG, Fortune B, Yang H, Sigal IA& Burgoyne CF . 2012 Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 52, 1206–1219. (doi:10.1167/iovs.10-5599). Crossref, Web of Science, Google Scholar - 22
Steinhart MR, Cone FE, Nguyen C, Nguyen TD, Pease ME, Puk O, Graw J, Oglesby EN& Quigley HA . 2012 Mice with an induced mutation in collagen 8A2 develop larger eyes and are resistant to retinal ganglion cell damage in an experimental glaucoma model. Mol. Vision 18, 1093–10106. PubMed, Web of Science, Google Scholar - 23
Lee EJ, Kim TW& Weinreb RN . 2012 Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma. Ophthalmology 119, 1359–1366. (doi:10.1016/j.ophtha.2012.01.034). Crossref, PubMed, Web of Science, Google Scholar - 24
Park SC, Kiumehr S, Teng CC, Tello C, Liebmann JM& Ritch R . 2012 Horizontal central ridge of the lamina cribrosa and regional differences in laminar insertion in healthy subjects. Invest. Ophthalmol. Vis. Sci. 53, 1610–1616. (doi:10.1167/iovs.11-7577). Crossref, PubMed, Web of Science, Google Scholar - 25
Strouthidis NG& Girard MJA . 2013 Altering the way the optic nerve head responds to intraocular pressure: a potential approach to glaucoma therapy. Curr. Opin. Pharmacol. 13, 83–89. (doi:10.1016/j.coph.2012.09.001). Crossref, PubMed, Web of Science, Google Scholar - 26
Grytz R, Fazio MA, Girard MJ, Libertiaux V, Bruno L, Gardiner S, Girkin CA& Crawford Downs J . In press. Material properties of the posterior human sclera. J. Mech. Behav. Biomed. Mater. (doi:10.1016/j.jmbbm.2013.03.027). Web of Science, Google Scholar - 27
Kupersmith MJ, Sibony P, Mandel G, Durbin M& Kardon RH . 2011 Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest. Ophthalmol. Vis. Sci. 52, 6558–6564. (doi:10.1167/iovs.10-6782). Crossref, PubMed, Web of Science, Google Scholar - 28
Foin N, Mari JM, Davies JE, Di Mario C& Girard MJ . 2013 Imaging of coronary artery plaques using contrast-enhanced optical coherence tomography. Eur. Heart J. Cardiovasc. Imaging 14, 85. (doi:10.1093/ehjci/jes151). Crossref, PubMed, Web of Science, Google Scholar - 29
Foin N, Mari JM, Nijjer S, Sen S, Petraco R, Ghione M, Di Mario C, Davies JE& Girard MJA . 2013 Intracoronary imaging using attenuation-compensated optical coherence tomography allows better visualisation of coronary artery diseases. Cardiovasc. Revascularization Med. 14, 139–143. (doi:10.1016/j.carrev.2013.03.007). Crossref, PubMed, Google Scholar - 30
Bay BK . 2008 Methods and applications of digital volume correlation. J. Strain Anal. Eng. Des. 43, 745–760. (doi:10.1243/03093247JSA436). Crossref, Google Scholar - 31
Verhulp E, Rietbergen Bv& Huiskes R . 2004 A three-dimensional digital image correlation technique for strain measurements in microstructures. J. Biomech. 37, 1313–1320. (doi:10.1016/j.jbiomech.2003.12.036). Crossref, PubMed, Web of Science, Google Scholar - 32
Franck C, Hong S, Maskarinec S, Tirrell D& Ravichandran G . 2007 Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp. Mech. 47, 427–438. (doi:10.1007/s11340-007-9037-9). Crossref, Web of Science, Google Scholar - 33
Gates M, Lambros J& Heath M . 2011 Towards high performance digital volume correlation. Exp. Mech. 1–17. Web of Science, Google Scholar - 34
Smith T, Bay B& Rashid M . 2002 Digital volume correlation including rotational degrees of freedom during minimization. Exp. Mech. 42, 272–278. (doi:10.1007/BF02410982). Crossref, Web of Science, Google Scholar - 35
Pan B, Qian K, Xie H& Asundi A . 2009 Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20, 062001. (doi:10.1088/0957-0233/20/6/062001). Crossref, Web of Science, Google Scholar - 36
Price KV, Storn RM& Lampinen JA . 2005 Differential evolution. A practical approach to global optimization. Berlin, Germany: Springer. Google Scholar - 37
Girard M, Suh JK, Hart RT, Burgoyne CF& Downs JC . 2007 Effects of storage time on the mechanical properties of rabbit peripapillary sclera after enucleation. Curr. Eye Res. 32, 465–470. (doi:10.1080/02713680701273792). Crossref, PubMed, Web of Science, Google Scholar - 38
Girard MJ, Downs JC, Bottlang M, Burgoyne CF& Suh JK . 2009 Peripapillary and posterior scleral mechanics-part ii: experimental and inverse finite element characterization. J. Biomech. Eng. 131, 051012. (doi:10.1115/1.3113683). Crossref, PubMed, Web of Science, Google Scholar - 39
Sigal IA, Flanagan JG& Ethier CR . 2005 Factors influencing optic nerve head biomechanics. Invest. Ophthalmol. Vis. Sci. 46, 4189–4199. (doi:10.1167/iovs.05-0541). Crossref, PubMed, Web of Science, Google Scholar - 40
Aernouts J, Couckuyt I, Crombecq K& Dirckx JJJ . 2010 Elastic characterization of membranes with a complex shape using point indentation measurements and inverse modelling. Int. J. Eng. Sci. 48, 599–611. (doi:10.1016/j.ijengsci.2010.02.001). Crossref, Web of Science, Google Scholar - 41
Holzapfel GA . 2000 Nonlinear solid mechanics. A continuum approach for engineering. West Sussex. UK: John Wiley & Sons Ltd. Google Scholar - 42
Sigal IA, Flanagan JG, Tertinegg I& Ethier CR . 2004 Finite element modeling of optic nerve head biomechanics. Invest. Ophthalmol. Vis. Sci. 45, 4378–4387. (doi:10.1167/iovs.04-0133). Crossref, PubMed, Web of Science, Google Scholar - 43
Bellezza AJ, Hart RT& Burgoyne CF . 2000 The optic nerve head as a biomechanical structure: initial finite element modeling. Invest. Ophthalmol. Vis. Sci. 41, 2991–3000. PubMed, Web of Science, Google Scholar - 44
Girard MJ, Downs JC, Burgoyne CF& Suh JK . 2009 Peripapillary and posterior scleral mechanics-part I: development of an anisotropic hyperelastic constitutive model. J. Biomech. Eng. 131, 051011. (doi:10.1115/1.3113682). Crossref, PubMed, Web of Science, Google Scholar - 45
Agoumi Y, Sharpe GP, Hutchison DM, Nicolela MT, Artes PH& Chauhan BC . 2011 Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls. Ophthalmology 118, 52–59. (doi:10.1016/j.ophtha.2010.05.016). Crossref, PubMed, Web of Science, Google Scholar - 46
Schmitt JM, Xiang SH& Yung KM . 1999 Speckle in optical coherence tomography. J. Biomed. Opt. 4, 95–105. (doi:10.1117/1.429925). Crossref, PubMed, Web of Science, Google Scholar - 47
Girard MJ, Strouthidis NG, Ethier CR& Mari JM . 2011 Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Invest. Ophthalmol. Vis. Sci. 52, 7738–7748. (doi:10.1167/iovs.10-6925). Crossref, PubMed, Web of Science, Google Scholar - 48
Kim TW, Kagemann L, Girard MJ, Strouthidis NG, Sung KR, Leung CK, Schuman JS& Wollstein G . In press. Imaging of the lamina cribrosa in glaucoma: perspectives of pathogenesis and clinical applications. Curr. Eye Res. Web of Science, Google Scholar - 49
Mari JM, Strouthidis NG, Park SC& Girard MJ . 2013 Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation. Invest. Ophthalmol. Vis. Sci. 54, 2238–2247. (doi:10.1167/iovs.12-11327). Crossref, PubMed, Web of Science, Google Scholar - 50
Girard MJA, Zimmo L, White E, Mari JM, Ethier CR& Strouthidis NG . 2012 Towards a biomechanically based diagnosis for glaucoma: in vivo deformation mapping of the human optic nerve head ASME 2012 Summer Bioengineering Conf.;June 20–23 ,Fajardo, Puerto Rico, 2012 . Google Scholar - 51
Reis AS, O'Leary N, Stanfield MJ, Shuba LM, Nicolela MT& Chauhan BC . 2012 Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 53, 5819–5826. (doi:10.1167/iovs.12-9924). Crossref, PubMed, Web of Science, Google Scholar - 52
Yang H, Thompson H, Roberts MD, Sigal IA, Downs JC& Burgoyne CF . 2010 Deformation of the early glaucomatous monkey optic nerve head connective tissue following acute IOP elevation within 3-D histomorphometric reconstructions. Invest. Ophthalmol. Vis. Sci. 52, 345–363. (doi:10.1167/iovs.09-5122). Crossref, Web of Science, Google Scholar - 53
Yang H, Downs JC, Sigal IA, Roberts MD, Thompson H& Burgoyne CF . 2009 Deformation of the normal monkey optic nerve head connective tissue following acute IOP elevation within 3-D histomorphometric reconstructions. Invest. Ophthalmol. Vis. Sci. 50, 5785–5799. (doi:10.1167/iovs.09-3410). Crossref, PubMed, Web of Science, Google Scholar - 54
Bay B, Smith T, Fyhrie D& Saad M . 1999 Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39, 217–226. (doi:10.1007/BF02323555). Crossref, Web of Science, Google Scholar - 55
Torzicky T, Pircher M, Zotter S, Bonesi M, Gotzinger E& Hitzenberger CK . 2012 High-speed retinal imaging with polarization-sensitive OCT at 1040 nm. Opt. Vis. Sci. 89, 585–592. (doi:10.1097/OPX.0b013e31825039be). Crossref, PubMed, Web of Science, Google Scholar - 56
Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE& Tearney GJ . 2011 Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat. Med. 17, 1010–1014. (doi:10.1038/nm.2409). Crossref, PubMed, Web of Science, Google Scholar