Abstract
This paper presents and tests a previously unrecognized mechanism for driving a replicating molecular system on the prebiotic earth. It is proposed that cell-free RNA replication in the primordial soup may have been driven by self-sustained oscillatory thermochemical reactions. To test this hypothesis, a well-characterized hydrogen peroxide oscillator was chosen as the driver and complementary RNA strands with known association and melting kinetics were used as the substrate. An open flow system model for the self-consistent, coupled evolution of the temperature and concentrations in a simple autocatalytic scheme is solved numerically, and it is shown that thermochemical cycling drives replication of the RNA strands. For the (justifiably realistic) values of parameters chosen for the simulated example system, the mean amount of replicant produced at steady state is 6.56 times the input amount, given a constant supply of substrate species. The spontaneous onset of sustained thermochemical oscillations via slowly drifting parameters is demonstrated, and a scheme is given for prebiotic production of complementary RNA strands on rock surfaces.
References
- 1
Neveu M, Kim H-J& Benner SA . 2013 The ‘strong’ RNA world hypothesis: fifty years old. Astrobiology 13, 391–403. (doi:10.1089/ast.2012.0868). Crossref, PubMed, Web of Science, Google Scholar - 2
Kováč L, Nosek J& Tomáška L . 2003 An overlooked riddle of life's origins: energy-dependent nucleic acid unzipping. J. Mol. Evol. 57, S182–S189. (doi:10.1007/s00239-003-0026-z). Crossref, PubMed, Web of Science, Google Scholar - 3
Krammer H, Möller FM& Braun D . 2012 Thermal, autonomous replicator made from transfer RNA. Phys. Rev. Lett. 108, 238104. (doi:10.1103/PhysRevLett.108.238104). Crossref, PubMed, Web of Science, Google Scholar - 4
Braun D, Goddard NL& Libchaber A . 2003 Exponential DNA replication by laminar convection. Phys. Rev. Lett. 91, 158103. (doi:10.1103/PhysRevLett.91.158103). Crossref, PubMed, Web of Science, Google Scholar - 5
Matatov YI . 1980 Study of the abiotic synthesis of amino acids during the polycondensation of formaldehyde and hydroxylamine. Z. Evol. Bio. Fiz. 16, 189–193. [In Russian with English abstract.]. PubMed, Google Scholar - 6
Ramirez WF& Turner BA . 1969 The dynamic modeling, stability, and control of a continuous stirred tank reactor. AIChE J. 15, 853–860. (doi:10.1002/aic.690150611). Crossref, Web of Science, Google Scholar - 7
Chang M& Schmitz RA . 1975 An experimental study of oscillatory states in a stirred reactor. Chem. Eng. Sci. 30, 21–34. (doi:10.1016/0009-2509(75)85112-8). Crossref, Web of Science, Google Scholar - 8
Wirges HP . 1980 Experimental study of self-sustained oscillations in a stirred tank reactor. Chem. Eng. Sci. 35, 2141–2146. (doi:10.1016/0009-2509(80)85038-X). Crossref, Web of Science, Google Scholar - 9
Zeyer KP, Mangold M, Obertopp T& Gilles ED . 1999 The iron(III)-catalyzed oxidation of ethanol by hydrogen peroxide: a thermokinetic oscillator. J. Phys. Chem. A 103, 5515–5522. (doi:10.1021/jp990710v). Crossref, Web of Science, Google Scholar - 10
Cohen WC& Spencer JL . 1962 Determination of chemical kinetics by calorimetry. Chem. Eng. Prog. 58, 40–41. Google Scholar - 11
Lo SN& Cholette A . 1972 Experimental study on the optimum performance of an adiabatic MT reactor. Can. J. Chem. Eng. 50, 71–80. (doi:10.1002/cjce.5450500113). Crossref, Web of Science, Google Scholar - 12
Williams RD . 1974 Indirect measurement of reaction rate. Chem. Eng. Educ. VIII, 28–30. Google Scholar - 13
Guha BK, Narsimham G& Agnew JB . 1975 An experimental study of transient behavior of an adiabatic continuous-flow stirred tank reactor. Ind. Eng. Chem. Process Des. Dev. 14, 146–152. (doi:10.1021/i260054a009). Crossref, Google Scholar - 14
Lin KF& Wu LL . 1981 Performance of an adiabatic controlled cycled stirred tank reactor. Chem. Eng. Sci. 36, 435–444. (doi:10.1016/0009-2509(81)85026-9). Crossref, Web of Science, Google Scholar - 15
Grau MD, Nougués JM& Puigjaner L . 2000 Batch and semibatch reactor performance for an exothermic reaction. Chem. Eng. Process. 39, 141–148. (doi:10.1016/S0255-2701(99)00015-X). Crossref, Web of Science, Google Scholar - 16
Ball R . 2013 Thermal oscillations in the decomposition of organic peroxides: identification of a hazard, use, and suppression. Ind. Eng. Chem. Res. 52, 922–933. (doi:10.1021/ie301070d). Crossref, Web of Science, Google Scholar - 17
Tang BL . 2007 Emergence of life: how and where? An update based on recent ideas. Prog. Nat. Sci. 17, 500–510. (doi:10.1080/10020070708541029). Crossref, Web of Science, Google Scholar - 18
Foustoukos DI, Houghton JL, Seyfried WE, Sievert SM& Cody GD . 2011 Kinetics of H2–O2–H2O redox equilibria and formation of metastable H2O2 under low temperature hydrothermal conditions. Geochim. Cosmochim. Acta 75, 1594–1607. (doi:10.1016/j.gca.2010.12.020). Crossref, Web of Science, Google Scholar - 19
Borda MJ, Elsetinow AR, Schoonen MA& Strongin DR . 2001 Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early earth. Astrobiology 1, 283–288. (doi:10.1089/15311070152757474). Crossref, PubMed, Web of Science, Google Scholar - 20
Borda MJ, Elsetinow AR, Strongin DR& Schoonen MA . 2003 A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim. Cosmochim. Acta 67, 935–939. (doi:10.1016/S0016-7037(02)01222-X). Crossref, Web of Science, Google Scholar - 21
Pugh CE, Hossner LR& Dixon JB . 1981 Pyrite and marcasite surface area as influenced by morphology and particle diameter. Soil Sci. Soc. Am. J. 45, 979–982. (doi:10.2136/sssaj1981.03615995004500050033x). Crossref, Web of Science, Google Scholar - 22
Barrie CT& Hannington MD . 1999 Classification of volcanic-associated massive sulfide deposits on host-rock composition. Rev. Econ. Geol. 8, 325–356. Google Scholar - 23
Barbusiński K . 2009 Fenton reaction: controversy concerning the chemistry. Ecol. Chem. Eng. S 16, 347–358. Web of Science, Google Scholar - 24
Xu Y, Schoonen MAA, Nordstrom DK, Cunningham KM& Ball JW . 1998 Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hot spring waters. Geochim. Cosmochim. Acta 62, 3729–3743. (doi:10.1016/S0016-7037(98)00269-5). Crossref, Web of Science, Google Scholar - 25
von Kiedrowski G& Szathmáry E . 2001 Selection versus coexistence of parabolic replicators spreading on surfaces. Selection 1, 173–180. (doi:10.1556/Select.1.2000.1-3.17). Crossref, Google Scholar - 26
Gray P& Scott SK . 1994 Chemical oscillations and instabilities: non-linear chemical kinetics. Oxford, UK: Clarendon Press. Google Scholar - 27
Carreto-Vazquez VH, Liu Y-S, Bukur DB& Mannan MS . 2011 Chip-scale calorimeters: potential uses in chemical engineering. J. Loss Prevent. Process Ind. 24, 34–42. (doi:10.1016/j.jlp.2010.07.012). Crossref, Web of Science, Google Scholar - 28
Mast CB, Osterman N& Braun D . 2012 Thermal solutions for molecular evolution. Int. J. Mod. Phys. B 26, 1230017. (doi:10.1142/S0217979212300174). Crossref, Web of Science, Google Scholar - 29
Braun D& Libchaber A . 2004 Thermal force approach to molecular evolution. Phys. Biol. 1, P1–P8. (doi:10.1088/1478-3967/1/1/P01). Crossref, PubMed, Web of Science, Google Scholar - 30
Imai E, Honda H, Hatori K& Brack A . 1991 Elongation of oligopeptides in a simulated hydrothermal system. Science 283, 831–833. (doi:10.1126/science.283.5403.831). Crossref, Web of Science, Google Scholar - 31
Altuvia S, Weinstein-Fischer D, Zhang A, Postow L& Storz G . 1997 A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90, 43–53. (doi:10.1016/S0092-8674(00)80312-8). Crossref, PubMed, Web of Science, Google Scholar - 32
Liu M, Gong X, Alluri RK, Wu J, Sablo T& Li Z . 2012 Characterization of RNA damage under oxidative stress in Escherichia coli. Biol. Chem. 393, 123–132. (doi:10.1515/hsz-2011-0247). Crossref, PubMed, Web of Science, Google Scholar - 33
Cohn CA, Laffers R& Schoonen MA . 2006 Using yeast RNA as a probe for generation of hydroxyl radicals by earth materials. Environ. Sci. Technol. 40, 2838–2843. (doi:10.1021/es052301k). Crossref, PubMed, Web of Science, Google Scholar - 34
Seto H, Koike H& Sasano H . 1994 Hydroxylation of deoxyguanosine at the C-8 position in the thiosulfate-hydrogen peroxide reaction system. Evidence of hydroxyl radical generation in the system. Chem. Lett. 23, 993–996. (doi:10.1246/cl.1994.993). Crossref, Web of Science, Google Scholar - 35
Halliwell B& Aruoma OI . 1991 DNA damage by oxygen-derived species: its mechanism and measurement in mammalian systems. FEBS Lett. 281, 9–19. (doi:10.1016/0014-5793(91)80347-6). Crossref, PubMed, Web of Science, Google Scholar - 36
Kamiya H, Suzuki A, Kawai K, Kasai H& Harashima H . 2007 Effects of 8-hydroxy-GTP and 2-hydroxy-ATP on in vitro transcription. Free Radic. Biol. Med. 43, 837–843. (doi:10.1016/j.freeradbiomed.2007.05.034). Crossref, PubMed, Web of Science, Google Scholar - 37
Mast CB, Schink S, Gerland U& Braun D . 2013 Escalation of polymerization in a thermal gradient. Proc. Natl Acad. Sci. USA 110, 8030–8035. (doi:10.1073/pnas.1303222110). Crossref, PubMed, Web of Science, Google Scholar - 38
Ferris JP, Hill AR, Liu RH& Orgel LE . 1996 Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381, 59–61. (doi:10.1038/381059a0). Crossref, PubMed, Web of Science, Google Scholar - 39
Joshi PC, Aldersley MF& Ferris JP . 2013 Progress in demonstrating homochiral selection in prebiotic RNA synthesis. Adv. Space Res. 51, 772–779. (doi:10.1016/j.asr.2012.09.036). Crossref, Web of Science, Google Scholar - 40
Luther A, Brandsch R& von Kiedrowski G . 1998 Surface-promoted replication and exponential amplification of DNA analogues. Nature 396, 245–248. (doi:10.1038/24343). Crossref, PubMed, Web of Science, Google Scholar - 41
Olasagasti F, Hyunsung JK, Pourmand N& Deamer DW . 2011 Non-enzymatic transfer of sequence information under plausible prebiotic conditions. Biochimie 93, 556–561. (doi:10.1016/j.biochi.2010.11.012). Crossref, PubMed, Web of Science, Google Scholar - 42
Orbán M& Epstein IR . 1987 Chemical oscillators in group VIA: the copper(II)-catalyzed reaction between hydrogen peroxide and thiosulfate ion. J. Am. Chem. Soc. 109, 101–106. (doi:10.1021/ja00235a017). Crossref, Web of Science, Google Scholar