Abstract
We formulate elasticity theory with microrotations using the framework of gauge theories, which has been developed and successfully applied in various areas of gravitation and cosmology. Following this approach, we demonstrate the existence of particle-like solutions. Mathematically, this is due to the fact that our equations of motion are of sine-Gordon type and thus have soliton-type solutions. Similar to Skyrmions and Kinks in classical field theory, we can show explicitly that these solutions have a topological origin.
References
Bilby B. A., Bullough R.& Smith E. . 1955 Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A 231, 263-273doi:10.1098/rspa.1955.0171 (doi:10.1098/rspa.1955.0171). Link, Web of Science, Google ScholarBöhmer C. G. . 2010 Modelling rotational elasticity with orthogonal matrices. 10 pp. (http://arXiv/org/abs/1008.4005org/abs/1008.4005). Google ScholarBöhmer C. G., Downes R.& Vassiliev D. . 2011 Rotational elasticity. Q. J. Mech. Appl. Math. 64, 415-439doi:10.1093/qjmam/hbr011 (doi:10.1093/qjmam/hbr011). Crossref, Web of Science, Google ScholarBraun O. M.& Kivshar Y. S. . 1998 Nonlinear dynamics of the Frenkel-Kontorova model. Phys. Rept. 306, 1-108doi:10.1016/S0370-1573(98)00029-5 (doi:10.1016/S0370-1573(98)00029-5). Crossref, Web of Science, Google ScholarCapriz G. . 1989 Continua with microstructure Berlin, Germany Springer Springer tracts in natural philosophy, no. 35. Crossref, Google Scholar- Cartan. 1922 Sur une géneralisation de la notion de courbure de Riemann et les espaces à torsion. C.R. Acad. Sci. (Paris) 174, 593-595. Google Scholar
Chervova O.& Vassiliev D. . 2010 The stationary Weyl equation and Cosserat elasticity. J. Phys. A Math. Theor. 43, 335203 doi:10.1088/1751-8113/43/33/335203 (doi:10.1088/1751-8113/43/33/335203). Crossref, Web of Science, Google ScholarCosserat E.& Cosserat F. Théorie des corps déformables. .[transl. by D.H. Delphenich]. See http://www.uni-due.de/~hm0014/Cosserat_files/Cosserat09_eng.pdf. Google ScholarDe Gennes P. G.& Prost J. . 1993 The physics of liquid crystals 2nd edn. Oxford, UK Clanderon Press. Google ScholarDerrick G. H. . 1964 Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252-1254doi:10.1063/1.1704233 (doi:10.1063/1.1704233). Crossref, Web of Science, Google ScholarDyszlewicz J. . 2004 Micropolar theory of elasticity Berlin, Germany Springer Lecture Notes in Applied and Computational Mechanics, no. 15. Crossref, Google ScholarEdelen D. G. B.& Lagoudas D. C. . 1988 Gauge theory and defects in solids. Mechanics and physics of discrete system vol. 1& Sih G. C. Amsterdam, The Netherlands North-Holland. Google ScholarEricksen J. L. . 1962 a Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9, 379-394doi:10.1007/BF00253358 (doi:10.1007/BF00253358). Crossref, Web of Science, Google ScholarEricksen J. L. . 1962 b Kinematics of macromolecules. Arch. Ration. Mech. Anal. 9, 1-8doi:10.1007/BF00253329 (doi:10.1007/BF00253329). Crossref, Web of Science, Google ScholarEricksen J. L. . 1967 Twisting of liquid crystals. J. Fluid Mech. 27, 59-64doi:10.1017/S0022112067000047 (doi:10.1017/S0022112067000047). Crossref, Web of Science, Google ScholarEricksen J. L.& Truesdell C. . 1957 Exact theory of stress and strain in rods and shells. Arch. Rat. Mech. Anal. 1, 295-323doi:10.1007/BF00298012 (doi:10.1007/BF00298012). Crossref, Web of Science, Google ScholarEringen A. C. . 1976 Continuum physics, vol. IV, Polar and nonlocal field theories New York, NY Academic Press. Google ScholarEringen A. C. . 1999 Microcontinuum field theories: I. Foundations and solids New York, NY Springerdoi:10.1007/978-1-4612-0555-5 (doi:10.1007/978-1-4612-0555-5). Crossref, Google ScholarEringen A. C.& Suhubi E. S. . 1964 a Nonlinear theory of simple microelastic solids I. Int. J. Eng. Sci. 2, 189-204. Crossref, Google ScholarEringen A. C.& Suhubi E. S. . 1964 b Nonlinear theory of simple microelastic solids II. Int. J. Eng. Sci. 2, 389-404. Crossref, Google ScholarFrenkel J.& Kontorowa T. . 1938 On the theory of plastic deformation and twinning. Phys. Z. Sowjetunion 13, 1-10. Google ScholarGreen A. E. . 1964 Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113-147doi:10.1007/BF00253051 (doi:10.1007/BF00253051). Crossref, Web of Science, Google ScholarGrioli G. . 1976 Contributo per una formulazione di tipo integrale della meccanica dei continui di Cosserat. Ann. Mat. Pura Appl. 111, 175-183. Crossref, Google ScholarGrioli G. . 2003 Microstructures as a refinement of Cauchy theory. Problems of physical concreteness. Contin. Mech. Thermodyn. 15, 441-450doi:10.1007/s00161-003-0122-8 (doi:10.1007/s00161-003-0122-8). Crossref, Web of Science, Google ScholarGronwald F.& Hehl F. W. . 1993 Stress and hyperstress as fundamental concepts in continuum mechanics and in relativistic field theory. Advances in Modern Continuum Dynamics, Int. Conf. in Memory of Antonio Signorini, Isola d'Elba, June 1991& Ferrarese G. 1-32 Pitagora Editrice Bologna (http://arxiv.org/abs/gr-qc/9701054). Google ScholarHehl F. W.& Obukhov Yu N. . 2003 Foundations of classical electrodynamics: Charge, flux, and metric Boston, MA Birkhäuser. Crossref, Google ScholarHehl F. W.& Obukhov Yu N. . 2007 Élie Cartan's torsion in geometry and in field theory, an essay. Ann. Fond. Louis Broglie 32, 157-194 (http://arxiv.org/abs/0711.1535). Google ScholarHehl F. W., McCrea J. D., Mielke E. W.& Ne'eman Y. . 1995 Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Repts. 258, 1-171doi:10.1016/0370-1573(94)00111-F (doi:10.1016/0370-1573(94)00111-F). Crossref, Web of Science, Google ScholarKadic A.& Edelen D. G. B. . 1983 A gauge theory of dislocations and disclinations Berlin, Germany Springerdoi:10.1007/3-540-11977-9 (doi:10.1007/3-540-11977-9). Crossref, Google ScholarKatanaev M. O.& Volovich I. V. . 1992 Theory of defects in solids and three-dimensional gravity. Ann. Phys. (USA) 216, 1-28doi:10.1016/0003-4916(52)90040-7 (doi:10.1016/0003-4916(52)90040-7). Crossref, Web of Science, Google ScholarKatanaev M. O. . 2003 Wedge dislocation in the geometric theory of defects. Theor. Math. Phys. 135, 733-744doi:10.1023/A:1023687003017 (doi:10.1023/A:1023687003017). Crossref, Web of Science, Google ScholarKatanaev M. O. . 2005 Geometric theory of defects. Phys. Uspekhi 48, 675-701 [Usp. Fiz. Nauk 175, (2005) 705–733, In Russian]doi:10.1070/PU2005v048n07ABE#002027 (doi:10.1070/PU2005v048n07ABE#002027). Crossref, Web of Science, Google ScholarKondo K. . 1952 On the geometrical and physical foundations of the theory of yielding. In Proc. of the 2nd Japan National Congress for Applied Mechanics Tokyo, Japan Science Council of Japan 41-47. Google ScholarKondo K. . 1964 On the analytical and physical foundations of the theory of dislocations and yielding by the differential geometry of continua. Int. J. Eng. Sci. 2, 219-251doi:10.1016/0020-7225(64)90022-9 (doi:10.1016/0020-7225(64)90022-9). Crossref, Google ScholarKontorova T.& Frenkel J. . 1938 On the theory of plastic deformation and twinning. Zh. Exp. Teor. Fiz. (ZHETF) 8, 89-95 (1340–1348. 1349–1358) [In Russian.]. Google ScholarKröner E. . 1967 Mechanics of generalized continua. In Proc. IUTAM Symp. Freudenstadt-Stuttgart. Berlin, Germany Springer. Google ScholarKröner E. . 1981 Continuum theory of defects. Physics of defects Les Houches NATO Summer School, 35th session, 28 July–29 August 1980, Balian R., Kléman M.& Poirier J.-P. 215-315 Amsterdam, The Netherlands North-Holland. Google ScholarLazar M. . 2009 The gauge theory of dislocations: a uniformly moving screw dislocation. Proc. R. Soc. A 465, 2505-2520doi:10.1098/rspa.2009.0043 (doi:10.1098/rspa.2009.0043). Link, Google ScholarLazar M. . 2011 On the fundamentals of the three-dimensional translation gauge theory of dislocations. Math. Mech. Solids 16, 253-264doi:10.1177/1081286510370889 (doi:10.1177/1081286510370889). Crossref, Web of Science, Google ScholarLazar M.& Anastassiadis C. . 2009 The gauge theory of dislocations: Static solutions of screw and edge dislocations. Phil. Mag. 89, 199-231doi:10.1080/14786430802558551 (doi:10.1080/14786430802558551). Crossref, Google ScholarLazar M.& Hehl F. W. . 2010 Cartan's spiral staircase in physics and, in particular, in the gauge theory of dislocations. Found. Phys. 40, 1298-1325doi:10.1007/s10701-010-9440-4 (doi:10.1007/s10701-010-9440-4). Crossref, Web of Science, Google Scholar- MacCullagh. 1848 An essay towards the dynamical theory of crystalline reflexion and refraction (read 9 Dec. 1839). Trans. Royal Irish Acad. Sci. 21, 17-50. Google Scholar
Malyshev C. . 2000 The T(3)-gauge model, the Einstein-like gauge equation, and Volterra dislocations with modified asymptotics. Ann. Phys. (USA) 286, 249-277doi:10.1006/aphy.2000.6088 (doi:10.1006/aphy.2000.6088). Crossref, Web of Science, Google ScholarMalyshev C. . 2007 The Einsteinian T(3)-gauge approach and the stress tensor of the screw dislocation in the second order: avoiding the cut-off at the core. J. Phys. Math. Theor. A 40, 10 657-10 684doi:10.1088/1751-8113/40/34/019 (doi:10.1088/1751-8113/40/34/019). Crossref, Web of Science, Google ScholarMaugin G. A. . 1998 On the structure of the theory of polar elasticity. Phil. Trans. R. Soc. Lond. A 356, 1367-1395doi:10.1098/rsta.1998.0226 (doi:10.1098/rsta.1998.0226). Link, Web of Science, Google ScholarMaugin G. A. . 2011 Configurational forces: thermodynamics, physics, mathematics, and numerics Boca Raton, FL Chapman and Hall. Google ScholarMermin N. D. . 1979 The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591-648doi:10.1103/RevModPhys.51.591 (doi:10.1103/RevModPhys.51.591). Crossref, Web of Science, Google ScholarMindlin R. D. . 1964 Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-78doi:10.1007/BF00248490 (doi:10.1007/BF00248490). Crossref, Web of Science, Google ScholarNatroshvili D., Giorgashvili L.& Stratis I. G. . 2003 Mathematical problems of the theory of elasticity of chiral materials. Appl. Math. Inform. Mech. 8, 47-103. Google ScholarNatroshvili D., Giorgashvili L.& Stratis I. G. . 2006 Representation formulae of general solutions in the theory of hemitropic elasticity. Q. J. Mech. Appl. Math. 59, 451-474doi:10.1093/qjmam/hbl011 (doi:10.1093/qjmam/hbl011). Crossref, Web of Science, Google ScholarNatroshvili D., Gachechiladze R., Gachechiladze A.& Stratis I. G. . 2007 Transmission problems in the theory of elastic hemitropic materials. Appl. Anal. 86, 1463-1508doi:10.1080/00036810701714198 (doi:10.1080/00036810701714198). Crossref, Web of Science, Google ScholarNeff P. . 2004 Geometrically exact Cosserat theory for bulk behaviour and thin structures. Modelling and mathematical analysis. Habilitation Thesis, Darmstadt Technical University, Darmstadt, Germany. Google ScholarOlsen O. H.& Samuelsen M. R. . 1980 Rotationally symmetric breather-like solutions to the sine-Gordon equation. Phys. Lett. A 77, 95-99doi:10.1016/0375-9601(80)90160-7 (doi:10.1016/0375-9601(80)90160-7). Crossref, Web of Science, Google ScholarRandono A.& Hughes T. L. . 2011 Torsional monopoles and torqued geometries in gravity and condensed matter. Phys. Rev. Lett. 106, 161102 doi:10.1103/PhysRevLett.106.161102 (doi:10.1103/PhysRevLett.106.161102). Crossref, PubMed, Web of Science, Google ScholarSchaefer H. . 1967 a Das Cosserat Kontinuum. ZAMM 47, 485-498doi:10.1002/zamm.19670470802 (doi:10.1002/zamm.19670470802). Crossref, Web of Science, Google ScholarSchaefer H. . 1967 b Analysis der Motorfelder im Cosserat-Kontinuum. ZAMM 47, 319-328doi:10.1002/zamm.19670470505 (doi:10.1002/zamm.19670470505). Crossref, Web of Science, Google ScholarSchaefer H. . 1970 Die Motorfelder des dreidimensionalen Cosserat-Kontinuums im Kalkül der Differentialformen Udine ICMS Lecture course, no. 19, International Centre for Mechanical Sciences pp. 1–60. Google ScholarShankar R. . 1977 Applications of topology to the study of ordered systems. J. Phys. 38, 1405-1412doi:10.1051/jphys:0197700380110140500 (doi:10.1051/jphys:0197700380110140500). Crossref, Google ScholarSkyrme T. H. R. . 1961 A non-linear field theory. In Proc. R. Soc. Lond. A 260, 127-138doi:10.1098/rspa.1961.0018 (doi:10.1098/rspa.1961.0018). Link, Web of Science, Google ScholarToupin R. A. . 1962 Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385-414doi:10.1007/BF00253945 (doi:10.1007/BF00253945). Crossref, Web of Science, Google ScholarToupin R. A. . 1964 Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17, 85-112doi:10.1007/BF00253050 (doi:10.1007/BF00253050). Crossref, Web of Science, Google ScholarTruesdell C.& Toupin R. . 1960 The classical field theories Berlin, Germany Springer Encyclopedia of Physics, no. III/1. Crossref, Google ScholarUnzicker A. . 2002 Topological defects in an elastic medium: a valid model particle physics. ‘Structured media’, Proc. Int. Symp. in memory of E. Kröner, Poznań, 16–21 September 2001& Maruszewski B. T. pp. 293–311. Publ. House Poznań University of Technology. Google ScholarVollhardt D.& Wölfle P. . 1990 The superfluid phases of Helium 3 London, UK Taylor and Francis. Crossref, Google ScholarWhittaker E. . 1951 wA history of the theories of aether and electricity London, UK Thomas Nelson and Sons. Google ScholarZeghadi A., Forest S., Gourgues A.-F.& Bouaziz O. . 2005 Cosserat continuum modelling of grain size effects in metal polycrystals. Proc. Appl. Math. Mech. 5, 79-82doi:10.1002/pamm.200510021 (doi:10.1002/pamm.200510021). Crossref, Google Scholar