Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Restricted accessResearch articles

Rehydroxylation (RHX) dating of archaeological pottery

Moira A. Wilson

Moira A. Wilson

School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK

[email protected] [email protected]

Google Scholar

Find this author on PubMed

, ,
Ceren Ince

Ceren Ince

School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK

Google Scholar

Find this author on PubMed

,
Margaret A. Carter

Margaret A. Carter

School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK

Google Scholar

Find this author on PubMed

and
Christopher Hall

Christopher Hall

School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK

Google Scholar

Find this author on PubMed

    We show that the rehydroxylation (RHX) method can be used to date archaeological pottery, and give the first RHX dates for three disparate items of excavated material. These are in agreement with independently assigned dates. We define precisely the mass components of the ceramic material before, during and after dehydroxylation. These include the masses of three types of water present in the sample: capillary water, weakly chemisorbed molecular water and chemically combined RHX water. We describe the main steps of the RHX dating process: sample preparation, drying, conditioning, reheating and measurement of RHX mass gain. We propose a statistical criterion for isolating the RHX component of the measured mass gain data after reheating and demonstrate how to calculate the RHX age. An effective lifetime temperature (ELT) is defined, and we show how this is related to the temperature history of a sample. The ELT is used to adjust the RHX rate constant obtained at the measurement temperature to the effective lifetime value used in the RHX age calculation. Our results suggest that RHX has the potential to be a reliable and technically straightforward method of dating archaeological pottery, thus filling a long-standing gap in dating methods.

    References

    • Bruijn H., Janssen A. L.& Hoffman-Klerkx E.. 1992 Spiegelbeelden: Werra-keramiek uit Enkhuizen, 1605. Zwolle, The Netherlands: Stichting Promotie Archeologie. Google Scholar
    • Collis J.. 1968 Excavations at Owslebury, Hants: an interim report. Antiquaries J. 48, 18–31. doi:10.1017/S0003581500034363 (doi:10.1017/S0003581500034363). Crossref, ISIGoogle Scholar
    • Cultrone G., Rodriguez-Navarro C., Sebastian E., Cazalla O.& De La Torre M. J.. 2001 Carbonate and silicate phase reactions during ceramic firing. Eur. J. Mineral. 13, 621–634. doi:10.1127/0935-1221/2001/0013-0621 (doi:10.1127/0935-1221/2001/0013-0621). Crossref, ISIGoogle Scholar
    • Hall C., Wilson M. A.& Hoff W. D.. 2011 Kinetics of long-term moisture expansion in fired-clay brick. J. Am. Ceram. Soc. 94, 3651–3654. doi:10.1111/j.1551-2916.2011.04831.x (doi:10.1111/j.1551-2916.2011.04831.x). Crossref, ISIGoogle Scholar
    • Hall C., Hamilton A.& Wilson M. A.. In press A. The influence of temperature on rehydroxylation [RHX] kinetics in archaeological pottery. J. Archaeol. Sci.. ISIGoogle Scholar
    • Hamilton A.& Hall C.. 2012 A review of rehydroxylation in fired-clay ceramics. J. Am. Ceram. Soc.doi:10.1111/j.1551-2916.2012.05298.x (doi:10.1111/j.1551-2916.2012.05298.x). Crossref, ISIGoogle Scholar
    • Kirkup L.& Frenkel R. B.. 2006 An introduction to uncertainty in measurement using the GUM (Guide to the expression of uncertainty in measurement). Cambridge University Press. CrossrefGoogle Scholar
    • Luterbacher J., Dietrich D., Xoplaki E., Grosjean M.& Wanner H.. 2004 European seasonal and annual temperature variability, trends and extremes since 1500. Science 303, 1499–1503. doi:10.1126/science.1093877 (doi:10.1126/science.1093877). Crossref, PubMed, ISIGoogle Scholar
    • Mann M. E., Zhang Z., Hughes M. K., Bradley R. S., Miller S. K., Rutherford S.& Ni F.. 2008 Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13 252–13 257. doi:10.1073/pnas.0805721105 (doi:10.1073/pnas.0805721105). Crossref, ISIGoogle Scholar
    • Mesbah H.. 2011 Study of (time)1/4 rehydroxylation kinetics in fired kaolinite. PhD thesis University of Manchester. Google Scholar
    • Peña J. T.. 2007 Roman pottery in the archaeological record. New York: Cambridge University Press. CrossrefGoogle Scholar
    • Savage S. D., Wilson M. A., Carter M. A., Hoff W. D., Hall C.& McKay B.. 2008 a Moisture expansion and mass gain in fired clay ceramics: a two-stage (time)1/4 process. J. Phys. D 41, 055402. doi:10.1088/0022-3727/41/5/055402 (doi:10.1088/0022-3727/41/5/055402). Crossref, ISIGoogle Scholar
    • Savage S. D., Wilson M. A., Carter M. A., McKay B., Hoff W. D.& Hall C.. 2008 b Mass gain due to the chemical recombination of water in fired clay brick. J. Am. Ceram. Soc. 91, 3396–3398. doi:10.1111/j.1551-2916.2008.02541.x (doi:10.1111/j.1551-2916.2008.02541.x). Crossref, ISIGoogle Scholar
    • Tosheva L., Mihailova B., Wilson M. A.& Carter M. A.. 2010 Gravimetric and spectroscopic studies of the chemical combination of moisture by as-fired and reheated terracotta. J. Eur. Ceram. Soc. 30, 1867–1872. doi:10.1016/j.jeurceramsoc.2010.02.029 (doi:10.1016/j.jeurceramsoc.2010.02.029). Crossref, ISIGoogle Scholar
    • Vyazovkin S.& Wight C. A.. 1997 Kinetics in solids. Annu. Rev. Phys. Chem. 48, 125–129. doi:10.1146/annurev.physchem.48.1.125 (doi:10.1146/annurev.physchem.48.1.125). Crossref, PubMed, ISIGoogle Scholar
    • Wilson M. A., Hoff W. D., Hall C., McKay B.& Hiley A.. 2003 Kinetics of moisture expansion in fired clay ceramics: a (time)1/4 law. Phys. Rev. Lett. 90, 125503. doi:10.1103/PhysRevLett.90.125503 (doi:10.1103/PhysRevLett.90.125503). Crossref, PubMed, ISIGoogle Scholar
    • Wilson M. A., Carter M. A., Hall C., Hoff W. D., Ince C., Savage S. D., McKay B.& Betts I. M.. 2009 Dating fired-clay ceramics using long-term power law rehydroxylation kinetics. Proc. R. Soc. A 465, 2407–2415. doi:10.1098/rspa.2009.0117 (doi:10.1098/rspa.2009.0117). LinkGoogle Scholar