Flexural edge waves generated by steady-state propagation of a loaded rectilinear crack in an elastically supported thin plate
Abstract
The problem of a rectilinear crack propagating at constant speed in an elastically supported thin plate and acted upon by an equally moving load is considered. The full-field solution is obtained and the spotlight is set on flexural edge wave generation. Below the critical speed for the appearance of travelling waves, a threshold speed is met which marks the transformation of decaying edge waves into edge waves propagating along the crack and dying away from it. Yet, besides these, and for any propagation speed, a pair of localized edge waves, which rapidly decay behind the crack tip, is also shown to exist. These waves are characterized by a novel dispersion relation and fade off from the crack line in an oscillatory manner, whence they play an important role in the far field behaviour. Dynamic stress intensity factors are obtained and, for speed close to the critical speed, they show a resonant behaviour which expresses the most efficient way to channel external work into the crack. Indeed, this behaviour is justified through energy considerations regarding the work of the applied load and the energy release rate. Results might be useful in a wide array of applications, ranging from fracturing and machining to acoustic emission and defect detection.
1. Introduction
Crack propagation in elastically supported thin structures made of brittle or quasi-brittle material is a common feature of many natural phenomena, such as ice fracturing and calving, rock fault planes and layered material failure, road pavement deterioration, surface coating detachment, to name only a few. In all instances, cracking takes place at the expense of the stored elastic energy, which is rapidly converted into stress waves travelling in the material and providing the so-called acoustic emission (AE). AE can be measured in the far-field and it lends a convenient indirect means to access the internal change in the material status. Besides travelling waves, moving in the bulk of the material, edge waves are usually excited and occur in a localized region near the boundaries [1,2]. Edge waves tend to appear at smaller speed than travelling waves, owing to their lower energy content, and consequently are detected first [3,4]. Furthermore, edge waves are closely related to edge buckling [5].
When an external load moves on a thin structure, its speed might easily approach some resonant speed and produce dramatic effects [6]. This outcome is further enhanced by the presence of cracks in the structure. An intriguing example of this is the discovery that a ground effect machine may be successfully employed as ice breaker when operated at the system’s critical speed [7]. The analysis of the effect of loads moving on elastic structures has been a long-standing subject of investigation, in the light of its many practical implications. Historically, much of this analysis has been directed by the desire to safely design bridges, rail tracks and road pavements under the ever-increasing demand of high-speed high-capacity transportation [8,9]. Recently, renewed interest has been drawn to model and design floating ice sheets as supporting structures for oil rigs, pipes, roads, runways and platforms [7]. Climate change and extensive investigation of the interaction between ice-shelf cracking and impinging sea-waves, in a process somewhat similar to that leading to edge waves excited by deep water surface waves [10], are also motivating further research in the field [11–13].
Remarkably, despite the broad interest and the wide range of application, only a handful of contributions may be found in the literature concerning fracture dynamics in elastically supported thin plates. The static solution to this problem was first considered in [14] and it was later extended in [15,16] to a weakly non-local foundation. In the classic references [17–19], several static problems for finite cracks in unsupported plates or shells are considered. The mathematical problem is related to that appearing in the study of crack propagation in couple-stress materials [20,21], although different boundary conditions (BCs) apply. In all cases, the combined effect of a moving load acting on a moving crack has never been investigated.
In this paper, the steady-state propagation of a rectilinear crack in a thin plate resting on a Winkler foundation and subject to a moving harmonic load applied at the crack flanks is considered. The spotlight is set on flexural edge waves generation as a result of this combination. In particular, it is observed that, compared with the classic subject of edge wave propagation at the boundary of a semi-infinite plate [22,23], a new edge wave arises out of the fact that propagation is restricted to the crack flanks. Besides, thorough investigation of the stress intensity factors reveals that the loading frequency may be tuned so as to either promote or hinder crack propagation in practical applications (consider, for instance, ice breaking as opposed to road pavement preservation). Finally, this solution may be used as a building block to tackle, through superposition, the problem of a general distributed load in steady-state motion on a cracked plate, where the load application is no longer restricted to the crack flanks, although it still moves with the crack tip.
The paper is organized as follows: §2 formulates the problem, which is then recast in the frequency domain in §3. The full-field solution is given in §4 and §5 discusses stress intensity factors (SIFs). Energy considerations supporting the non-monotonic behaviour of the SIFs are given in §6 along with the energy release rate (ERR) at the crack tip. Flexural edge wave solutions are considered in §7 and conclusions are drawn in §8. Finally, the electronic supplementary material presents the derivation of a conservative line integral, which extends to elastically supported thin plates the analogous result obtained in [24] for steady-state crack propagation in rate-dependent plastic solids.
2. Problem formulation
(a) Field equations
We consider a semi-infinite rectilinear crack propagating along its length in an infinite Kirchhoff–Love (K-L) thin elastic plate (figure 1). The plate, of thickness h, is elastically supported by a Winkler foundation with stiffness k. A moving Cartesian reference frame, , is attached to the crack tip such that the linear crack corresponds to the negative part of the -axis, while the -axis measures the distance from the crack line of a point on the plate. The crack is propagating at constant speed c (steady-state propagation) with respect to a fixed reference frame (x1,x2,x3). In this fixed frame, the governing equation for the transverse displacement of the plate, w, reads [7], §4.3
As is customary in a steady-state analysis, we set ourselves in the constant speed moving frame , with , and assume , which bears no explicit time dependence. Then, equation (2.1) may be rewritten as
It is worth observing that equation (2.2) corresponds to the governing equation for a supported thin elastic plate subject to an axial compression of magnitude Dκ−2 [5] or for an unsupported cylindrical shell [14,25]. We introduce the dimensionless coordinates and take q≡0, with no loss of generality. Then, equation (2.2) becomes
(b) Boundary conditions
Within the K-L theory, the bending moment, twisting moment and the equivalent shearing force are given by, respectively, [3]
The BCs across the crack line ξ2=0 and ahead of the crack tip, i.e. for ξ1>0, are
— of kinematic nature, expressing continuity of displacement and slope,
2.6— of static nature, demanding continuity for the bending moment and the equivalent shearing force,
2.7where m0 and v0 are shorthands for m220 and v20, respectively.
Here, denotes the jump of the function f(ξ2) across the crack line, namely f(0+)−f(0−), while a zero subscript means evaluation at the crack line, i.e. w0(ξ1)=w(ξ1,0).
As is well known, the solution of any linear fracture mechanics problem under general loading conditions may be obtained from the superposition of two simpler set-ups: the first set-up is obtained disregarding the crack and considering the given loading condition, the second set-up takes into account the presence of the crack, which is loaded by the force distribution found at the previous set-up. The latter problem may be further decomposed through harmonic expansion of the crack loading. In this paper, we are interested in investigating the effect of the crack and, consequently, only the second set-up will be considered. Indeed, it is assumed that the crack flanks are loaded in a continuous fashion by a general harmonic term. Then, the BCs at the crack line ξ2=0 are of static nature, namely
3. Analysis in the frequency domain
Let us define the bilateral (or full) Fourier transform of w(ξ1,ξ2) along ξ1 in the usual way [26]
In a similar fashion, the unilateral (or generalized, or half-range) transforms are introduced. The plus transform is defined as
Taking the Fourier transform of equation (2.3) in the ξ1 variable, a linear constant coefficient ODE is obtained whose general solution is
We observe that the factorization holds
This constraint amounts to requiring c<ccr, where ccr is the critical speed (2.4).
Let and be the restrictions of the displacement w(ξ1,ξ2) in the upper and in the lower half of the (ξ1,ξ2)-plane, respectively, where it is understood that and . The general solution of the ODE (2.3), bounded at infinity, retains only the A-terms,
Equation (2.6) may be written in terms of plus Fourier transforms
Likewise, the unilateral Fourier transform of equation (2.8) gives
Conditions (3.13) are immediately fulfilled through letting
Similarly, equations (3.14) give
In particular, in the limit as , the function 4ıK(s) in equation (3.18) reduces to the kernel (24) of [14]. Solving the system (3.16), which is linear in the unknown functions and plugging the result in equations (3.17) provides the following pair of uncoupled inhomogeneous Wiener–Hopf (W-H) equations
4. Full-field solution
The kernel K(s) is an even function of s and it possesses six roots all of which are, in the general case, of order unity (figure 2)
Here, s1 is taken to sit in the first quadrant of the complex plane,
In a similar fashion, we find the location of the purely imaginary roots s=±ır1, being
We note that is a monotonic decreasing function of ν (figure 3). Conversely, r1 is a real-valued monotonic increasing function of η, whose minimum is attained in the static case η=0, i.e. unlike s1, this root never reaches the real axis. Indeed, in the special case η=0 (stationary crack), we have
This situation is considered in [14], where the roots ±ır1 seem to have gone amiss. By contrast, for ηe≤η<ηcr, s1 turns real-valued and the root landscape (4.1) switches to (figure 4)
In this case, the strip of analyticity is taken to warrant the radiation (or Sommerfeld) condition of energy flowing from the load application zone to .
Let us define, for d=ν0(3+ν)/4 and for any chosen value ,
The function F(s) is even, deprived of zeros in a semi-infinite strip of analyticity , and it is such that in this strip. For such F(s), the W-H logarithmic factorization [26], §3.2 is applicable and it gives a plus and a minus function, respectively, denoted by F+(s) and F−(s), with the properties (see [27] for more details)
Accordingly, system (3.19) reads
As, in system (4.4), the left (right) hand is represented by a function which is analytic in the upper (lower) complex half-plane with a common strip of regularity , it can be analytically continued into the whole complex plane. Indeed, continuation brings in two entire functions, E1(s) and E2(s), which are holomorphic over the whole complex plane. Appealing to Liouville’s theorem, it is E1(s)≡E2(s)≡0, in the light of the fact that the behaviour for large |s| of either hands in equation (4.4) decays at least as fast as s−1. Thus,
Expressions for the unilateral Fourier transform of the bending moment and of the shearing force on the crack line follow immediately:
It is observed that, according to Jordan’s lemma [26], equations (4.5) and (4.6) satisfy both BCs (2.6) and, by the same argument, equations (4.6a) and (4.6b) imply the conditions (2.7).
Equations (3.6), (3.8), (3.15), (3.16) allow writing the full Fourier transform of the plate deflection
5. Stress-intensity factors
Stress-intensity factors (SIFs) can be determined from the behaviour of the relevant Fourier transform for large |s|. Indeed, equation (4.6a) gives
By the definition of the stress intensity factor [17] and recalling that σ22=6 h−2m22 times the omitted term Dλ−2, we find
The modulus of the dimensionless stress intensity factor is plotted in figure 5 at fixed ν=0.25 as a function of the loading frequency. As expected, |k1| asymptotes to zero as a−1/2 yet, remarkably, its decay is monotonic only for small speed η. Indeed, for η close to the critical speed, it displays an absolute maximum for ℜ(a) near 1, which becomes greater as . The same resonant behaviour appears in figure 6, which shows the dependence of |k1| from the crack speed η. The role of ν is illustrated in figure 7 according to which resonance is stronger near the ends of the admissible range .
Along the same line, it is easy to observe that, for large |s|, equation (4.6b) gives
As shown in figures 5 and 6, the behaviour of k3=λ3h/DV 0 is similar to that of k1, although it asymptotes to zero faster, as |a|−3/2. Figure 8 brings along the role of ν at η=1 and η=ηcr. In general, compared with |k1|, |k3| appears much smaller.
Determination of k2 requires dealing with the asymptotics of a full Fourier transform. Indeed, Fourier transformation of the twisting moment (2.5b) gives
It is observed that the first term in parenthesis in this equation is a minus function, which brings no contribution for ξ1>0. Conversely, the second term is analytic in a semi-infinite strip around the real axis and it is neither plus nor minus. Some straightforward asymptotic analysis of equation (4.5) gives, for large |s|,
As the asymptotics of the full Fourier transform is available, we employ Abel’s theorem [28] to get
6. Stored energy and energy release rate
The resonant behaviour of the SIFs can be most easily explained evaluating the energy fed into the system by the applied load, which, according to Betti’s theorem, is given by
The dimensionless energies introduced by the bending moment and by the shearing force, respectively, W1 and W2, are plotted in figure 9 as a function of the applied load frequency a. It appears that a local maximum in the energy input occurs for a≈1, which is responsible for the non-monotonic behaviour of the SIFs. Similarly, figure 10 presents W1 and W2 as a function of the crack propagation speed η.
A more rigorous argument pertains to the ERR at the crack tip, Gtip, which may be determined through the conservative integral I. A derivation of this integral in the case of elastically supported thin plates is presented in the electronic supplementary material (see also [29]). To relate I to the near-tip fields, we consider a suitable contour Γ constituted by a vanishingly thin rectangular box, centred at the crack tip, with sides 2δ1≪2δ2 parallel to the ξ1 and ξ2 axes, respectively, by the crack flanks Γ+ and Γ− and finally closed by the far-field circle ΓR, with radius R (figure 11). As we shrink the rectangular box down to the crack tip, i.e. , and simultaneously let , we get
7. Edge waves at the crack flanks
In this section, we provide some physical insight into the afore-obtained results. Looking for solutions of equation (2.3) in the form of a edge wave [23] for, say, the top half-plate,
The sign for ζ is chosen so as to warrant decay as , i.e. it is such that ℜ(μζ)>0. Indeed, μ is generally a complex number such that
Consideration of homogeneous BCs gives the dispersion relation
This quadratic equation in μ2 is plotted in figure 12 and it possesses two positive real roots provided that the moving frame speed η exceeds the threshold speed ηe≤ηcr. This threshold corresponds to the minimum speed of the phase velocity (see [23]) and it occurs at the dimensionless wavenumber . For η<ηe, μ is complex-valued and we find a pair of decaying edge waves whose wavenumber corresponds to the single complex solution of (7.3) complying with (7.2) and whose attenuation indexes are given by the pair of positive real values
For η≥ηe, edge waves become propagating along the crack flanks with a pair of real wavenumbers s−,s+ and the same pair of attenuation indices (7.4), for a total of four edge wave solutions. These occur at smaller speed yet lower (higher) wavenumber s− (respectively, s+) than travelling wave solutions. In the special case ν=0, they occur simultaneously, for η=ηe=ηcr and equation (7.3) admits the double root μ=1 (figure 12) and the attenuation index ζ is either or zero, whence only one proper edge wave solution really exists, the other solution corresponding to a travelling wave.
In the frequency domain analysis, edge wave solutions are closely related to the complex root s1, which expresses the wavenumber μ (as already remarked, for this class of solutions, the sign of ℜ(μ) is immaterial, which amounts to considering either s1 or ). Indeed, this root is a pole for the minus transforms (4.5), (4.6) and, when considered in the inversion integral (3.2), it gives a solution of the form (7.1). Such solution represents decaying (along ξ1) edge vibrations, which turn into proper edge waves, propagating at , provided that η≥ηe. Indeed, beyond the minimum speed ηe, s1 moves onto the real axis and it separates in the pair of poles s+ and s−. In this context, when ν=0, the roots s1 and become of fractional order and no longer correspond to exponential solutions.
Alongside the edge wave solution (7.1), we look for solutions in the form of exponentially decaying localized waves
For this wavenumber, we see that the attenuation index ζ is given by the complex-conjugated pair
This class of edge disturbances is related to the root ır1 through Fourier inversion. Figure 13 compares the attenuation rates ℜ(μζ) of all solutions. It appears that, in the regime η<ηe, any far-field condition (i.e. at large ξ2) is satisfied by a linear combination of one decaying wave with and one localized wave. Conversely, in the speed range ηe≤η<ηcr, any far-field condition is realized by a linear combination of two propagating edge waves.
To recapitulate, three edge wave solutions exist, which correspond to the zeros of the kernel function (3.18) in the complex plane, namely
— s1 (or −s1) corresponds to the wavenumber of a pair of decaying (along the crack flank) edge waves with real attenuation indexes, provided that the crack moving speed η rests below the threshold speed ηe;
— conversely, for ηe≤η<ηcr, s1 separates into a pair of real numbers, s−≤1≤s+, that describe the wavenumbers of two pairs of propagating edge waves, with the same pair of real attenuation indexes occurring at the previous regime;
— for any speed, ır1 corresponds to a pair of exponentially decaying solutions, localized at the back of the crack tip, associated with the positive wavenumber and with a complex-conjugated pair of attenuation indexes.
8. Conclusion
In this paper, the full-field solution for the steady-state propagation of a rectilinear crack in an elastically supported thin plate is given through the W-H method. A harmonic moving load is applied at the moving crack flanks. Focus is set on the analysis of flexural edge waves propagating as a result of the combined effect of crack extension and load motion. It is found that this combination brings in two regimes and three types of waves. Indeed, the solution identifies two threshold speeds, namely the critical speed ηcr, for travelling waves to appear in the bulk of the plate, and the edge wave speed ηe≤ηcr, which corresponds to the speed of edge waves at the boundary of a semi-infinite thin plate. These two threshold speeds coincide when ν=0, for it is shown that edge waves collapse into travelling waves. When the propagation speed η is smaller than ηe, a pair of edge waves exist that decay in an oscillatory manner along the crack-flanks and rapidly fade off away from the crack line with real attenuation index. Rapid attenuation away from the crack line remains for η≥ηe, yet edge waves become four and they propagate indefinitely along the crack flanks. For any propagation speed, a new type of edge wave is met which is highly localized behind the crack tip. Indeed, two such waves exist which decay with the real exponent along the crack, yet they are associated with a complex-conjugated pair of attenuation indexes, which amounts to oscillatory decay away from the crack line. For this localized edge wave, a novel dispersion relation is given and it is shown that its attenuation stands between the attenuation of decaying and propagating waves in the speed regime η<ηe. Consequently, this wave may be put to advantage for defect detection. This localized solution seems somewhat connected with the dynamic edge effect in cylindrical shells [30], for which curvature plays the role that is here taken by the elastic support.
Dynamic stress intensity factors are also obtained and they show a remarkable resonant behaviour, which is explained in the light of the ERR at the crack tip. Resonance may be successfully exploited in many practical applications, for instance to speed up ice breaking or sawing, or carefully avoided in many others, for example, to prevent rapid deterioration in pavements or layered materials. Finally, the work of the applied loading is shown to be proportional to the ERR at the crack tip through developing a conservative integral for elastically supported thin plates.
Data accessibility
This work does not have any experimental data.
Author contributions
E.R. and A.N. developed the model and the full-field solution; L.L. carried out the computational work. All authors gave their final approval for publication.
Competing interests
We have no competing interests.
Funding statement
This work was supported by ‘Fondazione Cassa di Risparmio di Modena’ within the framework of the Progetti di Ricerca finalizzata all’innovazione 2014, Sime n.2013.0662.