Proceedings of the Royal Society B: Biological Sciences

    The origins and geological history of the modern fauna of deep-sea echinoids is explored using a combination of palaeontological and molecular data. We demonstrate that, whereas generalist omnivores have migrated into the deep sea in low numbers over the past 200 Myr, there was a short time-interval between approximately 75 and 55 Myr when the majority of specialist detritivore clades independently migrated off-shelf. This coincides with a marked increase in seasonality, continental run-off and surface water productivity, and suggests that increasing organic carbon delivery into ocean basins was an important controlling factor. Oceanic anoxic events, by contrast, appear to have played a subsidiary role in controlling deep-sea diversity.

    References

    • Beaulieu S.E. 2002 Accumulation and fate of phytodetritus on the sea floor. Oceanogr. Mar. Bio. Annu. Rev. 40, 171–232. Web of ScienceGoogle Scholar
    • Bottjer D.J& Droser M.L The history of Phanerozoic bioturbation. The palaeobiology of trace fossils & Donovan S.K. 1994pp. 155–176. Eds. Chichester:Wiley. Google Scholar
    • Bralower T.J& Thierstein H.R. 1984 Low productivity and slow deep-water circulation in mid-Cretaceous oceans. Geology. 12, 614–618. Crossref, Web of ScienceGoogle Scholar
    • Corfield R.M& Norris R.D Deep water circulation in the Paleocene ocean. Correlation of the early Paleogene in northwest Europe. , Knox R.W.O, Corfield R.M& Dunay R.E Geol. Soc. Spec. Publ 101 1996. Google Scholar
    • Crimes T.P. 1974 Colonization of the early ocean floor. Nature. 248, 328–330. Crossref, Web of ScienceGoogle Scholar
    • D'Hondt S& Arthur M.A. 2002 Deep water in the late Maastrichtian ocean. Paleoceanography. 17, 1–11. CrossrefGoogle Scholar
    • De Ridder C& Lawrence J.M Food and feeding mechanisms: Echinoidea. Echinoderm nutrition , Jangoux M& Lawrence J.M. 1982pp. 57–116. Eds. Rotterdam:A. A. Balkema. Google Scholar
    • Falkowski P.G, Katz M.E, Knoll A.H, Quigg A, Raven J.A, Schofield O& Taylor F.J.R. 2004 The evolution of modern eukaryotic phytoplankton. Science. 305, 354–360. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Faul K.L, Anderson L.D& Delaney M.L. 2003 Late Cretaceous and early Paleogene nutrient and paleoproductivity records from Blake Nose, western North Atlantic Ocean. Paleoceanography. 18, 1–16. CrossrefGoogle Scholar
    • Frank T.D& Arthur M.A. 1999 Tectonic forcings of Maastrichtian ocean-climate evolution. Paleoceanography. 14, 103–117. CrossrefGoogle Scholar
    • Gale A.S The Cretaceous world. Biotic response to global change. The last 145 million years , Culver S.J& Rawson P.F. 2000pp. 4–20. Eds. Cambridge:The Natural History Museum/Cambridge University Press. CrossrefGoogle Scholar
    • Graf G. 1992 Benthic–pelagic coupling: a benthic view. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–303. Google Scholar
    • Gray J.S, Poore G.C.B, Ugland K.I, Wilson R.S, Olsgard F& Johannessen Ø. 1997 Coastal and deep-sea benthic diversities compared. Mar. Ecol. Prog. Ser. 159, 97–103. Crossref, Web of ScienceGoogle Scholar
    • Handoh I.C, Bigg G.R& Jones E.J.W. 2003 Evolution of upwelling in the Atlantic Ocean basin. Palaeogeog. Palaeoclim. Palaeoecol. 202, 31–58. Crossref, Web of ScienceGoogle Scholar
    • Horne D.J. 1999 Ocean circulation modes of the Phanerozoic: implications for the antiquity of deep-sea benthonic invertebrates. Crustaceana. 72, 999–1018. Crossref, Web of ScienceGoogle Scholar
    • Jacob U, Terpstra S& Brey T. 2003 High-Antarctic regular sea urchins—the role of depth and feeding in niche separation. Polar Biol. 26, 99–104. Crossref, Web of ScienceGoogle Scholar
    • Jacobs D.K& Lindberg D.R. 1998 Oxygen and evolutionary patterns in the sea: onshore/offshore trends and recent recruitment of deep-sea faunas. Proc. Natl Acad. Sci. USA. 95, 9396–9401. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Kelly D.C. 2002 Response of Antarctic (ODP Site 690) planktonic foraminifera to the Paleocene–Eocene thermal maximum: faunal evidence for ocean/climate change. Paleoceanography. 17, 1–13. CrossrefGoogle Scholar
    • Kennett J.P& Stott L.D. 1991 Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature. 353, 225–229. Crossref, Web of ScienceGoogle Scholar
    • Lauerman L.M.L& Kaufmann R.S. 1998 Deep-sea epibenthic echinoderms and a temporary varying food supply: results of a one year time series in the N.E. Pacific. Deep-sea Res. II. 45, 817–842. Crossref, Web of ScienceGoogle Scholar
    • Little C.T.S. 2002 The fossil record of hydrothermal vent communities. Cah. Biol. Mar. 43, 313–316. Web of ScienceGoogle Scholar
    • Little C.T.S& Vrijenhoek R.C. 2003 Are hydrothermal vent animals living fossils?. TREE. 18, 582–588. Web of ScienceGoogle Scholar
    • MacLeod K.G. 1994 Bioturbation, inoceramid extinction, and mid-Maastrichtian ecological change. Geology. 22, 139–142. Crossref, Web of ScienceGoogle Scholar
    • MacLeod K.G& Huber B.T. 1996 Reorganization of deep ocean circulation accompanying a Late Cretaceous extinction event. Nature. 380, 422–425. Crossref, Web of ScienceGoogle Scholar
    • MacLeod N, Ortiz N, Fefferman N, Clyde W, Schulter C& Maclean J Phenotypic response of foraminifera to episodes of global environmental change. Biotic response to global change. The last 145 million years , Culver S.J& Rawson P.F. 2000pp. 51–78. Eds. Cambridge:The Natural History Museum/Cambridge University Press. CrossrefGoogle Scholar
    • Madsen F.J. 1961 On the zoogeography and origin of the abyssal fauna in view of the knowledge of the Porcellanasteridae. Galathea Rept. 4, 177–217. Google Scholar
    • Martin R.E. 1996 Secular increase in nutrient levels through the Phanerozoic: implications for productivity, biomass, and diversity of the marine biosphere. Palaios. 11, 209–219. Crossref, Web of ScienceGoogle Scholar
    • Martin R.E. 2003 The fossil record of biodiversity: nutrients, productivity, habitat area and differential preservation. Lethaia. 36, 179–194. Crossref, Web of ScienceGoogle Scholar
    • Mirnov A.N. 1980 Two modes of formation of deep-sea echinoid fauna. Oceanology. 20, 462–465. Google Scholar
    • Moguilevsky A& Whatley R. 1996 Aberystwyth:University of Wales, Aberystwyth Press. Google Scholar
    • Nees S& Struck U Benthic foraminiferal response to major paleoceanographic changes: a view of the deep-sea restaurant menu. Reconstructing ocean history: a window into the future , Abrantes F& Mix A. 1999pp. 195–216. Eds. New York:Kluwer Academic/Plenum Publishers. CrossrefGoogle Scholar
    • Norris, R. D., Kroon, D., Huber, B. T., Erbacher, J. 2001 Cretaceous-Paleogene ocean and climate change in the subtropical North Atlantic. In Western North Atlantic Palaeogene and Cretaceous Palaeoceanography. (ed. D. Kroon, R. D. Norris & A. Klaus), Geological Society Special Publication 183, 1–22. Google Scholar
    • Oji T Deep-sea communities. Palaeobiology II , Briggs D.E.G& Crowther P.R. 2001pp. 444–447. Eds. Oxford:Blackwell Science. CrossrefGoogle Scholar
    • Ooster A.A Petrifactions remarquables des Alpes Suisses: Synopsis des Échinodermes fossiles des Alpes Suisses. 1865 Génève:Bâle. Google Scholar
    • Poulsen C.J, Barron E.J, Arthur M.A& Pearson W.H. 2001 Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography. 16, 576–592. CrossrefGoogle Scholar
    • Sanderson M.J. 2002 Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19, 101–109. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Seilacher A. 1974 Flysch trace fossils: evolution of behavioural diversity in the deep-sea. N. Jahrb. Geol. Palaont. Monat. 1974, 233–245. Google Scholar
    • Smith A.B& Crimes T.P. 1983 Trace fossils formed by heart urchins—a study of Scolicia and related traces. Lethaia. 16, 79–92. Crossref, Web of ScienceGoogle Scholar
    • Smith K.L, Kaufmann R.S& Baldwin R.J. 1994 Coupling of near-bottom and pelagic processes at abyssal depths in the eastern North Pacific Ocean. Limnol. Oceanogr. 39, 1101–1108. Crossref, Web of ScienceGoogle Scholar
    • Steuber T. 1996 Stable isotope sclerochronology of rudist bivalves: growth rates and Late Cretaceous seasonality. Geology. 24, 315–318. Crossref, Web of ScienceGoogle Scholar
    • Stockley, B., Smith, A.B., Littlewood, D.T., Lessios, H. 2005 Phylogenetic relationships of spatangoid sea urchins (Echinoidea): congruence between morphological and molecular estimates is dependent on taxon sampling density. Zool. Script. (In press). Google Scholar
    • Tunnicliffe V. 1992 The nature and origin of the modern hydrothermal vent fauna. Palaios. 7, 338–350. CrossrefGoogle Scholar
    • Vermeij G.J. 1995 Economics, volcanoes, and phanerozoic revolutions. Paleobiology. 21, 125–152. Crossref, Web of ScienceGoogle Scholar
    • Wetzel A& Uchman A. 1998 Deep-sea benthic food content recorded by ichnofabric: a conceptual model based on observations from Paleogene flysch, Carpathians, Poland. Palaios. 13, 533–546. Crossref, Web of ScienceGoogle Scholar
    • Wilson G.D.F. 1999 Some of the deep-sea fauna is ancient. Crustaceana. 72, 1019–1030. Crossref, Web of ScienceGoogle Scholar
    • Young C.M, Tyler P.A, Emson R.H& Gage J.D. 1993 Perception and selection of macrophytodetrital falls by the bathyal echinoid Stylocidaris lineata. Deep-sea Res. 40, 1475–1486. CrossrefGoogle Scholar
    • Zenkevitch L.A& Birstein J.A. 1960 On the problem of the antiquity of the deep-sea fauna. Deep-sea Res. 7, 10–23. Google Scholar