Proceedings of the Royal Society B: Biological Sciences
Restricted access

Terror birds on the run: a mechanical model to estimate its maximum running speed

R. Ernesto Blanco

R. Ernesto Blanco

Instituto de Física, Facultad de IngenieríaJulio Herrera y Reissig 565, Montevideo 11300, Uruguay

[email protected]

Google Scholar

Find this author on PubMed

and
Washington W Jones

Washington W Jones

Departamento de Paleontología, Facultad de Ciencias, Universidad de la RepúblicaIguá 4225, Montevideo 11400, Uruguay

Google Scholar

Find this author on PubMed

    ‘Terror bird’ is a common name for the family Phorusrhacidae. These large terrestrial birds were probably the dominant carnivores on the South American continent from the Middle Palaeocene to the Pliocene–Pleistocene limit. Here we use a mechanical model based on tibiotarsal strength to estimate maximum running speeds of three species of terror birds: Mesembriornis milneedwardsi, Patagornis marshi and a specimen of Phorusrhacinae gen. The model is proved on three living large terrestrial bird species. On the basis of the tibiotarsal strength we propose that Mesembriornis could have used its legs to break long bones and access their marrow.

    References

    • Alexander R.McN Allometry of the leg bones of moas (Dinornithes) and other birds. J. Zool. 200, 1983a 215–231. Crossref, Web of ScienceGoogle Scholar
    • Alexander R.McN On massive legs of a moa (Pachyornis elephantopus, Dinornithes) and other birds. J. Zool. (Lond.). 201, 1983b 363–376. Crossref, Web of ScienceGoogle Scholar
    • Alexander R.McN Dynamics of dinosaurs & others extinct giants. 1989 New York:Columbia University Press. Google Scholar
    • Alexander R.McN Principles of animal locomotion. 2003 Princeton University Press. Google Scholar
    • Alexander R.McN, Maloiy G.M.O, Njau R& Jayes A.S. 1979 Mechanics of running of the ostrich (Struthio camelus). J. Zool. 187, 169–178. Crossref, Web of ScienceGoogle Scholar
    • Alexander R.McN, Fariña R& Vizcaíno S.F. 1999 Tail blow energy and carapace fractures in a large glyptodont (Mammalia, Xenarthra). Zool. J. Linn. Soc. 126, 41–46. Crossref, Web of ScienceGoogle Scholar
    • Alvarenga H.M.F& Höfling E. 2003 Systematic revision of the Phorusrhacidae (Aves: Ralliformes). Papéis Avulsos de Zoologia. Museu de Zoologia da Universidade de Sao Paulo. 43, 55–91. Google Scholar
    • Andrews C. 1899 On the extinct birds of Patagonia. Trans. Zool. Soc. Lond. 15, 55–86. CrossrefGoogle Scholar
    • Argot C. 2004 Evolution of South American mammalian predators (Borhyaenoidae): anatomical and palaeobiological implications. Zool. J. Linn. Soc. 140, 487–521. Crossref, Web of ScienceGoogle Scholar
    • Baskin J.A. 1995 The giant flightless bird Titanis walleri (Aves: Phorusrhacidae) from the Pleistocene coastal plain of South Texas. J. Vert. Paleontol. 15, 842–844. Crossref, Web of ScienceGoogle Scholar
    • Biewener A.A. 1989 Scaling body support in mammals: limb posture and muscle mechanics. Science. 245, 45–48. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Biewener A.A. 1990 Biomechanics of mammalian terrestrial locomotion. Science. 250, 1097–1103. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Blanco R.E& Mazzetta G.V. 2001 A new approach to evaluate the cursorial ability of the giant theropod Giganotosaurus carolinii. Acta Palaeontol. Pol. 46, 193–202. Web of ScienceGoogle Scholar
    • Blanco R.E, Gambini R& Fariña R.A. 2003 Mechanical model for theoretical determination of maximum running speed in mammals. J. Theor. Biol. 222, 117–125. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Blum H. 1977 Physics and the art of kicking and punching. Am. J. Phys. 45, 61–64. Crossref, Web of ScienceGoogle Scholar
    • Brehm A.E Brehms Tierleben. Allgemeine Kunde des Tierreichs. 1880 Leipzig:Wien Bibliographisches Institut. Google Scholar
    • Campbell B& Lack E A dictionary of birds. 1985 Vermillion:Buteo Books. Google Scholar
    • Christiansen P. 1998 Strenght indicator values of theropod long bones, with comments on limb proportions and cursorial potential. Gaia. 15, 241–255. Google Scholar
    • Christiansen P. 2002 Locomotion in terrestrial mammal: the influence of the body mass, limb length and bone proportions on speed. Zool. J. Linn. Soc. 136, 685–714. Crossref, Web of ScienceGoogle Scholar
    • Cracraft J. 1976 The hindlimb elements of the moas (Aves: Dinornithidae): a multivariate assessment of size and shape. J. Morphol. 150, 495–526. Crossref, Web of ScienceGoogle Scholar
    • Cubo J& Casinos A. 1998 The variation of the cross sectional shape in the long bones of birds and mammals. Ann. Sci. Nat. 1, 51–62. Google Scholar
    • Farley C.T. 1997 Maximum speed and mechanical power output in lizards. J. Exp. Biol. 200, 2189–2195. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Farlow J.O, Smith M.B& Robinson J.M. 1995 Body mass, bone “strength indicator”, and cursorial potential of tyrannosaurus rex. J. Vert. Paleontol. 15, 713–725. Crossref, Web of ScienceGoogle Scholar
    • Garland T& Janis C.M. 1993 Does metatarsal/tarsal ratio predict maximal running speed in cursorial mammals?. J. Zool. 229, 133–151. Crossref, Web of ScienceGoogle Scholar
    • Hutchinson J.R. 2004 Biomechanical modeling and sensitivity analysis of bipedal running ability. I. Extant taxa. J. Morphol. 262, 421–440. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Hutchinson J.R& García M. 2002 Tyrannosaurus was not a fast runner. Nature. 415, 1018–1021. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Irschik D.J& Garland T. 2001 Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annu. Rev. Ecol. Syst. 32, 367–396. CrossrefGoogle Scholar
    • Kraglievich L. 1932 Una gigantesca ave fósil del Uruguay. Devincenzia gallinali n. gen. n. sp., tipo de una nueva familia, Devincenziidae, del Orden Stereornithes. Ann. Mus. Hist. Nat. Mont. 3, 323–355. Google Scholar
    • Marshal L.G& Cifelli R.L. 1990 Analysis of changing diversity patterns in Cenozoic land mammals age faunas, South America. Palaeovertebrata. 19, 169–210. Google Scholar
    • Moreno F.P. 1889 Breve reseña de los progresos del Museo La Plata, durante el segundo semestre de 1888. Boletin del Museo La Plata. 3, 1–44. Google Scholar
    • Moreno F.P& Mercerat A. 1891 Catálogo de los pájaros fósiles de la República Argentina conservados en el Museo de La Plata. Anales del Museo de La Plata. 1, 7–71. Google Scholar
    • Patak A.E& Baldwin J. 1998 Pelvic limb musculature in emu Dromaius novaehollandiae (Aves: Struthioniformes: Dromaiidae): adaptations to high-speed running. J. Morphol. 238, 23–37. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Paul G.S. 1998 Limb design, function and running performance in ostrich-mimics and tyrannosaurs. Gaia. 15, 257–270. Google Scholar
    • Rinderknecht A& Noriega J.I. 2002 Un nuevo género de Anhingidae (Aves: Pelecaniformes) del Plioceno–Pleistoceno del Uruguay (Formación San José). Ameghiniana. 39, 183–191. Google Scholar
    • Tambussi C, Ubilla M& Perea D. 1999 The youngest large carnassial bird (Phorusrhacidae, Phorusrhacinae) from South America (Pliocene—Early Pleistocene of Uruguay). J. Vert. Paleontol. 19, 404–406. Crossref, Web of ScienceGoogle Scholar
    • Walker J.D. 1975 Karate strikes. Am. J. Phys. 43, 845–849. Crossref, Web of ScienceGoogle Scholar
    • Webb S.D. 1991 Ecogeography and the Great American interchange. Paleobiology. 17, 266–280. Crossref, Web of ScienceGoogle Scholar
    • Weyand P.G, Sternlight D.B, Bellizzi M.J& Wright S. 2000 Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 89, 1991–1999. Crossref, PubMed, Web of ScienceGoogle Scholar
    • Zeffer A, Johansson L.C& Marmebro Å. 2003 Functional correlation between habitat use and leg morphology in birds (Aves). Biol. J. Linn. Soc. 79, 461–484. Crossref, Web of ScienceGoogle Scholar