Proceedings of the Royal Society B: Biological Sciences
Restricted access

Finding NEMO: nestedness engendered by mutualistic organization in anemonefish and their hosts

Published:https://doi.org/10.1098/rspb.2006.3758

    The interaction structure of mutualistic relationships, in terms of relative specialization of the partners, is important to understanding their ecology and evolution. Analyses of the mutualistic interaction between anemonefish and their host sea anemones show that the relationship is highly nested in structure, generalist species interacting with one another and specialist species interacting mainly with generalists. This supports the hypothesis that the configuration of mutualistic interactions will tend towards nestedness. In this case, the structure of the interaction is at a much larger scale than previously hypothesized, across more than 180° of longitude and some 60° of latitude, probably owing to the pelagic dispersal capabilities of these species in a marine environment. Additionally, we found weak support for the hypothesis that geographically widespread species should be more generalized in their interactions than species with small ranges. This study extends understanding of the structure of mutualistic relationships into previously unexplored taxonomic and physical realms, and suggests how nestedness analysis can be applied to the conservation of obligate species interactions.

    References

    • Arvedlund M, McCormick M.I, Fautin D.G& Bildsoe M. 1999Host recognition and possible imprinting in the anemonefish Amphiprion melanopus (Pisces: Pomacentridae). Mar. Ecol. Prog. Ser. 188, 207–218. Crossref, ISIGoogle Scholar
    • Atmar W& Patterson B.D. 1993The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia. 96, 373–382.doi:10.1007/BF00317508. . Crossref, PubMed, ISIGoogle Scholar
    • Bascompte J, Jordano P, Melián C.J& Olesen J.M. 2003The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA. 100, 9383–9387.doi:10.1073/pnas.1633576100. . Crossref, PubMed, ISIGoogle Scholar
    • Bascompte J, Jordano P& Olesen J.M. 2006Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science. 312, 431–433.doi:10.1126/science.1123412. . Crossref, PubMed, ISIGoogle Scholar
    • Bond W.J. 1994Do mutualisms matter—assessing the impact of pollinator and disperser disruption on plant extinction. Phil. Trans. R. Soc. B. 344, 83–90. Link, ISIGoogle Scholar
    • Boucher D.H. 1985London, UK:Croom Helm. Google Scholar
    • Carlson B. 1996The Amphiprion leucokranos mystery. Aquarium Frontiers. 3, 34–37. Google Scholar
    • Chadwick N.E& Arvedlund M. 2005Abundance of giant sea anemones and patterns of association with anemonefish in the northern Red Sea. J. Mar. Biol. Assoc. UK. 85, 1287–1292.doi:10.1017/S0025315405012440. . Crossref, ISIGoogle Scholar
    • Douglas A.ESymbiotic interactions. 1994Oxford, UK:Oxford University Press. Google Scholar
    • Dunn D.F. 1981The clownfish sea anemones: Stichodactylidae (Coelenterata: Actiniaria) and other sea anemones symbiotic with pomacentrid fishes. Trans. Am. Phil. Soc. 71, 1–115. CrossrefGoogle Scholar
    • Dupont Y.L, Hansen D.M& Olesen J.M. 2003Structure of a plant–pollinator network in the high altitude sub-alpine desert of Tenerife, Canary Islands. Ecography. 26, 301–310.doi:10.1034/j.1600-0587.2003.03443.x. . Crossref, ISIGoogle Scholar
    • Elliott J.K& Mariscal R.N. 2001Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment. Mar. Biol. 138, 23–36.doi:10.1007/s002270000441. . Crossref, ISIGoogle Scholar
    • Elliott J.K, Elliott J.M& Mariscal R.N. 1995Host selection, location, and association behaviors of anemonefishes in-field settlement experiments. Mar. Biol. 122, 377–389.doi:10.1007/BF00350870. . Crossref, ISIGoogle Scholar
    • Elliott J.K, Lougheed S.C, Bateman B, McPhee L.K& Boag P.T. 1999Molecular phylogenetic evidence for the evolution of specialization in anemonefishes. Proc. R. Soc. B. 266, 677–685.doi:10.1098/rspb.1999.0689. . Link, ISIGoogle Scholar
    • Fautin D.G. 1986Why do anemonefishes inhabit only some host actinians?. Environ. Biol. Fishes. 15, 171–180.doi:10.1007/BF00002992. . Crossref, ISIGoogle Scholar
    • Fautin D.G. 1991The anemonefish symbiosis—what is known and what is not. Symbiosis. 10, 23–46. ISIGoogle Scholar
    • Fautin D.G. 1992Anemonefish recruitment: the roles of order and chance. Symbiosis. 14, 143–160. ISIGoogle Scholar
    • Fautin D.G& Allen G.RAnemonefishes and their host sea anemones. 1997Perth, Australia:Western Australian MuseumRevised edition. Google Scholar
    • Godwin J& Fautin D.G. 1992Defense of host actinians by anemonefishes. Copeia. 3, 903–908. Google Scholar
    • Guimarães P.R& Guimarães P. 2006Improving the analyses of nestedness for large sets of matrices. Environ. Model. Software. 21, 1512–1513.doi:10.1016/j.envsoft.2006.04.002. . Crossref, ISIGoogle Scholar
    • Guimarães P.R, Rico-Gray V, Furtado do Reis S& Thompson J.N. 2006Asymmetries in specialization in ant–plant mutualistic networks. Proc. R. Soc. B. 273, 2041–2047.doi:10.1098/rspb.2006.3548. . Link, ISIGoogle Scholar
    • Hattori A. 1995Coexistence of 2 anemonefishes, Amphiprion clarkii and A. perideraion, which utilize the same host sea-anemone. Environ. Biol. Fishes. 42, 345–353.doi:10.1007/BF00001464. . Crossref, ISIGoogle Scholar
    • Hattori A. 2002Small and large anemonefishes can coexist using the same patchy resources on a coral reef, before habitat destruction. J. Anim. Ecol. 71, 824–831.doi:10.1046/j.1365-2656.2002.00649.x. . Crossref, ISIGoogle Scholar
    • Holbrook S.J& Schmitt R.J. 2005Growth, reproduction and survival of a tropical sea anemone (Actiniaria): benefits of hosting anemonefish. Coral Reefs. 24, 67–73.doi:10.1007/s00338-004-0432-8. . Crossref, ISIGoogle Scholar
    • Jones G.P, Planes S& Thorrold S.R. 2005Coral reef fish larvae settle close to home. Curr. Biol. 15, 1314–1318.doi:10.1016/j.cub.2005.06.061. . Crossref, PubMed, ISIGoogle Scholar
    • Jordano P, Bascompte J& Olesen J.MThe ecological consequences of complex topology and nested structure in pollination webs. Plant–pollinator interactions: from specialization to generalization, Waser N.M& Ollerton J. 2006pp. 173–199. Eds. Chicago, IL:University of Chicago Press. Google Scholar
    • Lewinsohn T.M, Prado P.I, Jordano P, Bascompte J& Olesen J.M. 2006Structure in plant–animal interaction assemblages. Oikos. 113, 174–184.doi:10.1111/j.0030-1299.2006.14583.x. . Crossref, ISIGoogle Scholar
    • Medan D, Basilio A.M, Devoto M, Bartoloni N.J, Torretta J.P& Petanidou TMeasuring generalization and connectance in temperate, year-long active systems. Plant–pollinator interactions: from specialization to generalization, Waser N.M& Ollerton J. 2006pp. 245–259. Eds. Chicago, IL:University of Chicago Press. Google Scholar
    • Memmott J, Waser N.M& Price M.V. 2004Tolerance of pollination networks to species extinctions. Proc. R. Soc. B. 271, 2605–2611.doi:10.1098/rspb.2004.2909. . Link, ISIGoogle Scholar
    • Monteiro F.A, Sole-Cava A.M& Thorpe J.P. 1997Extensive genetic divergence between populations of the common intertidal sea anemone Actinia equina from Britain, the Mediterranean and the Cape Verde Islands. Mar. Biol. 129, 425–433.doi:10.1007/s002270050183. . Crossref, ISIGoogle Scholar
    • Moyer J.T. 1976Geographical variation and social dominance in Japanese populations of the anemonefish Amphiprion clarkii. Jpn J. Ichth. 23, 12–22. Google Scholar
    • Ollerton J“Biological Barter”: patterns of specialization compared across different mutualisms. Plant–pollinator interactions: from specialization to generalization, Waser N.M& Ollerton J. 2006pp. 411–435. Eds. Chicago, IL:University of Chicago Press. Google Scholar
    • Ollerton J, Johnson S.D, Cranmer L& Kellie S. 2003The pollination ecology of an assemblage of grassland asclepiads in South Africa. Ann. Bot. 92, 807–834.doi:10.1093/aob/mcg206. . Crossref, PubMed, ISIGoogle Scholar
    • Paracer S& Ahmadjian VSymbiosis: an introduction to biological associations. 2000Oxford, UK:Oxford University Press. Google Scholar
    • Patterson B.D. 1990On the temporal development of nested subset patterns of species composition. Oikos. 59, 330–342. Crossref, ISIGoogle Scholar
    • Perrin M.C, Thorpe J.P& Sole-Cava A.M. 1999Population structuring, gene dispersal and reproduction in the Actinia equina species group. Oceanog. Mar. Biol. 37, 129–152. ISIGoogle Scholar
    • Porat D& Chadwick-Furman N.E. 2004Effects of anemonefish on giant sea anemones: expansion behavior, growth, and survival. Hydrobiologia. 530, 513–520.doi:10.1007/s10750-004-2688-y. . ISIGoogle Scholar
    • Porat D& Chadwick-Furman N.E. 2005Effects of anemonefish on giant sea anemones: ammonium uptake, zooxanthella content and tissue regeneration. Mar. Freshw. Behav. Phys. 38, 43–51.doi:10.1080/10236240500057929. . Crossref, ISIGoogle Scholar
    • Reisser W. 1992Bristol, UK:Biopress Ltd. Google Scholar
    • Richardson D.L. 1999Correlates of environmental variables with patterns in the distribution and abundance of two anemonefishes (Pomacentridae: Amphiprion) on an eastern Australian sub-tropical reef system. Environ. Biol. Fishes. 55, 255–263.doi:10.1023/A:1007596330476. . Crossref, ISIGoogle Scholar
    • Schmitt R.J& Holbrook S.J. 2003Mutualism can mediate competition and promote coexistence. Ecol. Lett. 6, 898–902.doi:10.1046/j.1461-0248.2003.00514.x. . Crossref, ISIGoogle Scholar
    • Shuman C.S, Hodgson G& Ambrose R.F. 2005Population impacts of collecting sea anemones and anemonefish for the marine aquarium trade in the Philippines. Coral Reefs. 24, 564–573.doi:10.1007/s00338-005-0027-z. . Crossref, ISIGoogle Scholar
    • Smith D.C& Douglas A.EThe biology of symbiosis. 1987London, UK:Edward Arnold. Google Scholar
    • Solecava A.M, Thorpe J.P& Todd C.D. 1994High genetic similarity between geographically distant populations in a sea-anemone with low dispersal capabilities. J. Mar. Biol. Assoc. UK. 74, 895–902. Crossref, ISIGoogle Scholar
    • Srinivasan M, Jones G.P& Caley M.J. 1999Experimental evaluation of the roles of habitat selection and interspecific competition in determining patterns of host use by two anemonefishes. Mar. Ecol. Prog. Ser. 186, 283–292. Crossref, ISIGoogle Scholar
    • Thompson J.NThe geographic mosaic of coevolution. 2005Chicago, IL:University of Chicago Press. Google Scholar
    • Vázquez D.P& Aizen M.A. 2003Null model analyses of specialization in plant–pollinator interactions. Ecology. 84, 2493–2501. Crossref, ISIGoogle Scholar
    • Vázquez D.P& Aizen M.A. 2004Asymmetric specialization: a pervasive feature of plant–pollinator interactions. Ecology. 85, 1251–1257. Crossref, ISIGoogle Scholar
    • Vázquez D.P& Aizen M.ACommunity-wide patterns of specialization in plant–pollinator interactions revealed by null models. Plant–pollinator interactions: from specialization to generalization, Waser N.M& Ollerton J. 2006pp. 200–219. Eds. Chicago, IL:University of Chicago Press. Google Scholar
    • Waser N.M& Ollerton J. 2006Chicago, IL:University of Chicago Press. Google Scholar