Abstract
Visual patterns in animals may serve different functions, such as attracting mates and deceiving predators. If a signal is used for multiple functions, the opportunity arises for conflict among the different functions, preventing optimization for any one visual signal. Here we investigate the hypothesis that spatial separation of different visual signal functions has occurred in Bicyclus butterflies. Using phylogenetic reconstructions of character evolution and comparisons of evolutionary rates, we found dorsal surface characters to evolve at higher rates than ventral characters. Dorsal characters also displayed sex-based differences in evolutionary rates more often than did ventral characters. Thus, dorsal characters corresponded to our predictions of mate signalling while ventral characters appear to play an important role in predator avoidance. Forewing characters also fit a model of mate signalling, and displayed higher rates of evolution than hindwing characters. Our results, as well as the behavioural and developmental data from previous studies of Bicyclus species, support the hypothesis that spatial separation of visual signal functions has occurred in Bicyclus butterflies. This study is the first to demonstrate, in a phylogenetic framework, that spatial separation of signals used for mate signalling and those used for predator avoidance is a viable strategy to accommodate multiple signal functions. This signalling strategy has important ramifications on the developmental evolution of wing pattern elements and diversification of butterfly species.
References
Ackery P.R., Smith C.R.& Vane-Wright R.I. Carcasson's African butterflies. 1995 Canberra, Australia:CSIRO. Google ScholarAllen C.E., Beldade P., Zwaan B.J.& Brakefield P.M. . 2008 Differences in the selection response of serially repeated colour pattern characters: standing variation, development, and evolution. BMC Evol. Biol. 8, 94 doi:10.1186/1471-2148-8-94. . Crossref, PubMed, Web of Science, Google ScholarBeldade P.& Brakefield P.M. . 2002 The genetics and evo–devo of butterfly wing patterns. Nat. Rev. Genet. 3, 442–452.doi:10.1038/nrg818. . Crossref, PubMed, Web of Science, Google ScholarBeldade P., Koops K.& Brakefield P.M. . 2002 Developmental constraints versus flexibility in morphological evolution. Nature. 416, 844–847.doi:10.1038/416844a. . Crossref, PubMed, Web of Science, Google ScholarBrakefield P.M. . 1998 The evolution–development interface and advances with the eyespot patterns of Bicyclus. Heredity. 80, 265–272.doi:10.1046/j.1365-2540.1998.00366.x. . Crossref, Web of Science, Google ScholarBrakefield P.M.& Reitsma N. . 1991 Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Entomol. 16, 291–303. Crossref, Web of Science, Google ScholarBrakefield P.M., Gates J., Keys D., Kesbeke F., Wijngaarden P.J., Monteiro A., French V.& Carroll S.B. . 1996 Development, plasticity and evolution of butterfly eyespot patterns. Nature. 384, 236–242.doi:10.1038/384236a0. . Crossref, PubMed, Web of Science, Google ScholarBurns J.M. . 1966 Preferential mating versus mimicry: disruptive selection and sex-limited dimorphism in Papilio glaucus. Science. 153, 551–553.doi:10.1126/science.153.3735.551. . Crossref, PubMed, Web of Science, Google ScholarChippindale P.T., Bonett R.M., Baldwin A.S.& Wiens J.J. . 2004 Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution. 58, 2809–2822.doi:10.1111/j.0014-3820.2004.tb01632.x. . Crossref, PubMed, Web of Science, Google ScholarCondamin M. Monographie du Genre Bicyclus (Lepidoptera, Satyridae). 1973 Dakar, Senegal:IFAN. Google ScholarDarwin C. The descent of man, and selection in relation to sex. 2nd edn. 1871 New York, NY:A. L. Burt. Google ScholarEndler J.A. . 1992 Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153.doi:10.1086/285308. . Crossref, Web of Science, Google ScholarEstrada C.& Jiggins C.D. . 2008 Interspecific sexual attraction because of convergence in warning colouration: is there a conflict between natural and sexual selection in mimetic species?. J. Evol. Biol. 21, 749–760.doi:10.1111/j.1420-9101.2008.01517.x. . Crossref, PubMed, Web of Science, Google ScholarFisher R.A. The genetical theory of natural selection. 1930 Oxford, UK:Oxford University Press. Google ScholarFordyce J.A., Nice C.C., Forister M.L.& Shapiro A.M. . 2002 The significance of wing pattern diversity in the Lycaenidae: mate discrimination by two recently diverged species. J. Evol. Biol. 15, 871–879.doi:10.1046/j.1420-9101.2002.00432.x. . Crossref, Web of Science, Google ScholarHolloway G.J., Brakefield P.M.& Kofman S. . 1993 The genetics of wing pattern elements in the polyphenic butterfly, Bicyclus anynana. Heredity. 70, 179–186.doi:10.1038/hdy.1993.27. . Crossref, Web of Science, Google ScholarHuelsenbeck J.P.& Ronquist F. . 2001 MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics. 17, 754–755.doi:10.1093/bioinformatics/17.8.754. . Crossref, PubMed, Web of Science, Google ScholarLewis P.O. . 2001 A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925.doi:10.1080/106351501753462876. . Crossref, PubMed, Web of Science, Google ScholarLukhtanov V.A., Kandul N.P., Plotkin J.B., Dantchenko A.V., Haig D.& Pierce N.E. . 2005 Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature. 436, 385–389.doi:10.1038/nature03704. . Crossref, PubMed, Web of Science, Google ScholarLyytinen A., Brakefield P.M., Lindström L.& Mappes J. . 2004 Does predation maintain eyespot plasticity in Bicyclus anynana?. Proc. R. Soc. Lond. B. 271, 279–283.doi:10.1098/rspb.2003.2571. . Link, Web of Science, Google Scholar- Maddison, W. P. & Maddison, D. R. 2007 Mesquite: a modular system for evolutionary analysis, v. 2.01. Tucson, AZ: University of Arizona. See http://mesquiteproject.org. Google Scholar
Marshall C.R., Raff E.C.& Raff R.A. . 1994 Dollo's law and the death and resurrection of genes. Proc. Natl Acad. Sci. USA. 91, 12 283–12 287.doi:10.1073/pnas.91.25.12283. . Crossref, Web of Science, Google ScholarMonteiro A.& Pierce N.E. . 2001 Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1α gene sequences. Mol. Phylogenet. Evol. 18, 264–281.doi:10.1006/mpev.2000.0872. . Crossref, PubMed, Web of Science, Google ScholarMonteiro A., Brakefield P.M.& French V. . 1997 Butterfly eyespots: the genetics and development of the colour rings. Evolution. 51, 1207–1216.doi:10.2307/2411050. . Crossref, PubMed, Web of Science, Google ScholarMonteiro A., Prijs J., Bax M., Hakkaart T.& Brakefield P.M. . 2003 Mutants highlight the modular control of butterfly eyespot patterns. Evol. Dev. 5, 180–187.doi:10.1046/j.1525-142X.2003.03029.x. . Crossref, PubMed, Web of Science, Google ScholarMonteiro A.F., Brakefield P.M.& French V. . 1994 The evolutionary genetics and developmental basis of wing pattern variation in the butterfly Bicyclus anynana. Evolution. 48, 1147–1157.doi:10.2307/2410374. . Crossref, PubMed, Web of Science, Google ScholarNieberding C.M., 2008 The male sex pheromone of the butterfly Bicyclus anynana: towards and evolutionary analysis. PLoS ONE. 37, e2751 doi:10.1371/journal.pone.0002751. . Crossref, Web of Science, Google ScholarNijhout H.F. The development and evolution of butterfly wing patterns. 1991 Washington, DC:Smithsonian. Google ScholarOmland K.E.& Lanyon S.M. . 2000 Reconstruction plumage evolution in orioles (Icterus): repeated convergence and reversal in patterns. Evolution. 54, 2119–2133.doi:10.1111/j.0014-3820.2000.tb01254.x. . Crossref, PubMed, Web of Science, Google ScholarPagel M. . 1999 The maximum likelihood approach to reconstructing ancestral characters states of discrete characters on phylogenies. Syst. Biol. 48, 612–622.doi:10.1080/106351599260184. . Crossref, Web of Science, Google ScholarPagel M., Meade A.& Barker D. . 2004 Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684.doi:10.1080/10635150490522232. . Crossref, PubMed, Web of Science, Google ScholarPromislow D.E.L., Montgomerie R.& Martin T.E. . 1992 Mortality costs of sexual dimorphism in birds. Proc. R. Soc. Lond. B. 250, 143–150.doi:10.1098/rspb.1992.0142. . Link, Web of Science, Google Scholar- R Development Core Team 2007 R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See http://www.R-project.org. Google Scholar
Ritchie M.G.& Gleason J.M. . 1995 Rapid evolution of courtship song pattern in Drosophila willistoni sibling species. J. Evol. Biol. 8, 463–479.doi:10.1046/j.1420-9101.1995.8040463.x. . Crossref, Web of Science, Google ScholarRobertson K.A.& Monteiro A. . 2005 Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proc. R. Soc. B. 272, 1541–1546.doi:10.1098/rspb.2005.3142. . Link, Web of Science, Google ScholarRoskam J.C.& Brakefield P.M. . 1996 A comparison of temperature-induced polyphenism in African Bicyclus butterflies from a seasonal savannah-rainforest ecotone. Evolution. 50, 2360–2372.doi:10.2307/2410705. . PubMed, Web of Science, Google ScholarSeehausen O.& van Alphen J.M. . 1999 Can sympatric speciation by disruptive sexual selection explain rapid evolution of cichlid diversity in Lake Victoria?. Ecol. Lett. 2, 262–271.doi:10.1046/j.1461-0248.1999.00082.x. . Crossref, Web of Science, Google ScholarStevens M., Hardman C.J.& Stubbins C.L. . 2008 Conspicuousness, not eye mimicry, makes ‘eyespots’ effective antipredator signals. Behav. Ecol. 19, 525–531.doi:10.1093/beheco/arm162. . Crossref, Web of Science, Google ScholarSullivan J.& Swofford D.L. . 1997 Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. J. Mam. Evol. 4, 77–86.doi:10.1023/A:1027314112438. . Crossref, Google ScholarVallin A., Jakobsson S., Lind J.& Wiklund C. . 2005 Prey survival by predator intimidation: an experimental study of peacock butterfly defence against blue tits. Proc. R. Soc. B. 272, 1203–1207.doi:10.1098/rspb.2004.3034. . Link, Web of Science, Google ScholarWallace A.R. Darwinism: an exposition of the theory of natural selection with some of its applications. 1889 London, UK:Macmillan and Company. Google ScholarWest-Eberhard M.J. . 1983 Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183.doi:10.1086/413215. . Crossref, Web of Science, Google ScholarWhiting M.F., Bradler S.& Maxwell T. . 2003 Loss and recovery of wings in stick insects. Nature. 421, 264–267.doi:10.1038/nature01313. . Crossref, PubMed, Web of Science, Google ScholarWiens J.J. . 2001 Widespread loss of sexually selected traits: how the peacock lost its spots. Trends Ecol. Evol. 16, 517–523.doi:10.1016/S0169-5347(01)02217-0. . Crossref, Web of Science, Google ScholarZuk M.& Kolluru G.R. . 1998 Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 73, 415–438.doi:10.1086/420412. . Crossref, Web of Science, Google Scholar