Proceedings of the Royal Society B: Biological Sciences
Restricted accessResearch articles

DNA content and distribution in ancient feathers and potential to reconstruct the plumage of extinct avian taxa

    Feathers are known to contain amplifiable DNA at their base (calamus) and have provided an important genetic source from museum specimens. However, feathers in subfossil deposits generally only preserve the upper shaft and feather ‘vane’ which are thought to be unsuitable for DNA analysis. We analyse subfossil moa feathers from Holocene New Zealand rockshelter sites and demonstrate that both ancient DNA and plumage information can be recovered from their upper portion, allowing species identification and a means to reconstruct the appearance of extinct taxa. These ancient DNA sequences indicate that the distal portions of feathers are an untapped resource for studies of museum, palaeontological and modern specimens. We investigate the potential to reconstruct the plumage of pre-historically extinct avian taxa using subfossil remains, rather than assuming morphological uniformity with closely related extant taxa. To test the notion of colour persistence in subfossil feathers, we perform digital comparisons of feathers of the red-crowned parakeet (Cyanoramphus novaezelandiae novaezelandiae) excavated from the same horizons as the moa feathers, with modern samples. The results suggest that the coloration of the moa feathers is authentic, and computer software is used to perform plumage reconstructions of moa based on subfossil remains.

    References

    • Anderson A.. 1989Prodigious birds. Cambridge, UK: Cambridge University Press. Google Scholar
    • Baker A. J., Huynen L. J., Haddrath O., Miller C. D.& Lambert D. M.. 2005Reconstructing the tempo and mode of evolution in an extinct clade of birds with ancient DNA: the giant moas of New Zealand. Proc. Natl Acad. Sci. USA 102, 8257–8262. (doi:10.1073/pnas.0409435102). Crossref, PubMed, ISIGoogle Scholar
    • Borson N., Berdan F., Stark E., States J.& Wettstein P. J.. 1998Origin of an Anasazi scarlet macaw feather artifact. Am. Antiquity 63, 131–142. (doi:10.2307/2694780). Crossref, ISIGoogle Scholar
    • Bunce M., Worthy T. H., Ford T., Hoppitt W., Willerslev E., Drummond A.& Cooper A.. 2003Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis. Nature 425, 172–175. (doi:10.1038/nature01871). Crossref, PubMed, ISIGoogle Scholar
    • Cooper A.& Poinar H. N.. 2000Ancient DNA: do it right or not at all. Science 289, 1139. (doi:10.1126/science.289.5482.1139b). Crossref, PubMed, ISIGoogle Scholar
    • Cooper A., Mourer-Chauvire C., Chambers G. K., von Haeseler A., Wilson A. C.& Paabo S.. 1992Independent origins of New Zealand moas and kiwis. Proc. Natl Acad. Sci. USA 89, 8741–8744. (doi:10.1073/pnas.89.18.8741). Crossref, PubMed, ISIGoogle Scholar
    • Cooper A., Fox-Lalueza C., Anderson A., Rambaut A., Austin J.& Ward R.. 2001Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704–707. (doi:10.1038/35055536). Crossref, PubMed, ISIGoogle Scholar
    • Emslie S. D.& Patterson W.. 2007Abrupt recent shift in delta13C and delta15N values in Adelie penguin eggshell in Antarctica. Proc. Natl Acad. Sci. USA 104, 11 666–11 669. (doi:10.1073/pnas.0608477104). Crossref, ISIGoogle Scholar
    • Feldman C. R.& Spicer G. S.. 2002Mitochondrial variation in sharp-tailed snakes (Contia tenuis): evidence of a cryptic species. J. Herpetol. 36, 648–655. Crossref, ISIGoogle Scholar
    • Fetzner J. W.. 1999Extracting high quality DNA from shed reptile skin: a simplified method. Biotechniques 26, 1052–1054. Crossref, PubMed, ISIGoogle Scholar
    • Flannery T.& Schouten P.. 2001A gap in nature: discovering the world's extinct animals. Australia: The Text Publishing Company. Google Scholar
    • Forrest R. M.. 1987A partially mummified skeleton of Anomalopteryx didiformis from Southland. J. R. Soc. N. Z. 17, 399–408. Crossref, ISIGoogle Scholar
    • Gilbert M. T. P., et al.2007Whole-genome shotgun sequencing of mitochondria from ancient hair shafts. Science 317, 1927–1930. (doi:10.1126/science.1146971). Crossref, PubMed, ISIGoogle Scholar
    • Gilbert M. T. P., et al.2008DNA from pre-clovis coprolites in Oregon, North America. Science 320, 786–789. (doi:10.1126/science.1154116). Crossref, PubMed, ISIGoogle Scholar
    • Gill B.& Martinson P.. 1991New Zealand's extinct birds. New Zealand: Random Century. Google Scholar
    • Hamilton A.. 1894On the feathers of a small species of moa (Megalapteryx) found in a cave at the head of the Waikaia River, with a notice of a moa-hunters camping place on the Old Man Range. Trans. Proc. N. Z. Inst. 27, 232–238. Google Scholar
    • Hofreiter M., Poinar H. N., Spaulding W. G., Bauer K., Martin P. S., Possnert G.& Paabo S.. 2000A molecular analysis of ground sloth diet through the last glaciation. Mol. Ecol. 9, 1975–1984. (doi:10.1046/j.1365-294X.2000.01106.x). Crossref, PubMed, ISIGoogle Scholar
    • Horváth M. B., Martínez-Cruz B., Negro J. J., Kalmár L.& Godoy J. A.. 2005An overlooked DNA source for non-invasive genetic analysis in birds. J. Avian Biol. 36, 84–88. (doi:10.1111/j.0908-8857.2005.03370.x). Crossref, ISIGoogle Scholar
    • Hutton F. W.& Coughtrey M.. 1875Description of some moa remains from the Knobby Ranges. With anatomical notes. Trans. Proc. N. Z. Inst. 7, 266–273. Google Scholar
    • Huynen L., Miller C. D., Scofield R. P.& Lambert D. M.. 2003Nuclear DNA sequences detect species limits in ancient moa. Nature 425, 175–178. (doi:10.1038/nature01838). Crossref, PubMed, ISIGoogle Scholar
    • Huynen L., Lissone I., Sawyer S.& Lambert D.. 2008Genetic identification of moa remains recovered from Tiniroto, Gisborne. J. R. Soc. N. Z. 38, 231–235. Crossref, ISIGoogle Scholar
    • Kumar S., Tamura K.& Nei M.. 2004MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150–163. (doi:10.1093/bib/5.2.150). Crossref, PubMed, ISIGoogle Scholar
    • Lalueza-Fox C., et al.2007A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318, 1453–1455. (doi:10.1126/science.1147417). Crossref, PubMed, ISIGoogle Scholar
    • Lambert D. M., Baker A., Huynen L., Haddrath O., Herbert P. D. N.& Miller C. D.. 2005Is a large-scale DNA-based inventory of ancient life possible?J. Hered. 96, 279–284. (doi:10.1093/jhered/esi035). Crossref, PubMed, ISIGoogle Scholar
    • Loreille O., Roumat E., Verneau O., Bouchet F.& Hänni C.. 2001Ancient DNA from Ascaris: extraction amplification and sequences from eggs collected in coprolites. Int. J. Parasitol. 31, 1101–1106. (doi:10.1016/S0020-7519(01)00214-4). Crossref, PubMed, ISIGoogle Scholar
    • Ludwig A., et al.2009Coat colour variation at the beginning of horse domestication. Science 324, 485. (doi:10.1126/science.1172750). Crossref, PubMed, ISIGoogle Scholar
    • Miller W., et al.2009The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus). Genome Res. 19, 213–220. (doi:10.1101/gr.082628.108). Crossref, PubMed, ISIGoogle Scholar
    • Morris R.& Smith H.. 1988Wild south: saving New Zealand's endangered birds. TVNZ in Association with Century Hutchinson: New Zealand. Google Scholar
    • Murray P.& Vickers-Rich P.. 2003Magnificent mihirungs: the colossal flightless birds of the Australian dreamtime. USA: Indiana University Press. Google Scholar
    • Oliver W.. 1955New Zealand birds, 2nd edn. Wellington, New Zealand: Reed. Google Scholar
    • Paabo S.. 1989Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc. Natl Acad. Sci. USA 86, 1939–1943. (doi:10.1073/pnas.86.6.1939). Crossref, PubMed, ISIGoogle Scholar
    • Payne R. B.& Sorenson M. D.. 2002Museum collections as sources of genetic data. Bonner Zoologische Beitrage 51, 97–104. Google Scholar
    • Poinar H. N., Hofreiter M., Spaulding W. G., Martin P. S., Stankiewicz B. A., Bland H., Evershed R. P., Possnert G.& Paabo S.. 1998Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 218, 402–406. (doi:10.1126/science.281.5375.402). Crossref, ISIGoogle Scholar
    • Rompler H., Rohland N., Lalueza-Fox C., Willerslev E., Kuznetsova T., Rabeder G., Bertranpetit J., Schoneberg T.& Hofreiter M.. 2006Nuclear gene indicates coat-colour polymorphism in mammoths. Science 313, 62. (doi:10.1126/science.1128994). Crossref, PubMed, ISIGoogle Scholar
    • Sefc K. M., Payne R. B.& Sorenson M. D.. 2003Microsatellite amplification from museum feather samples: effects of fragment size and template concentration on genotyping errors. Auk 120, 982–989. (doi:10.1642/0004-8038(2003)120[0982:MAFMFS]2.0.CO;2). Crossref, ISIGoogle Scholar
    • Stone R.. 2002Mammoth: the resurrection of an ice age giant. New York, NY: Basic Books. Google Scholar
    • Swofford D. L.. 2000PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, MA: Sinauer Associates. Google Scholar
    • Tennyson A.& Martinson P.. 2006Extinct birds of New Zealand. Wellington, New Zealand: Te Papa Press. Google Scholar
    • Vickers-Rich P., van Tets G. F.& Knight F.. 1985Kadimakara: extinct vertebrates of Australia. USA: Princeton University Press. Google Scholar
    • Vickers-Rich P., Trusler P., Rowley M. J., Cooper A., Chambers G. K., Bock W. J., Millener P. R., Worthy T. H.& Yaldwyn J. C.. 1995Morphology, myology, collagen and DNA of a mummified moa, Megalapteryx didinus (Aves: Dinornithiformes) from New Zealand. Tuhinga Rec. Mus. N. Z. Te Papa Tongarewa 4, 1–26. Google Scholar
    • Villafuerte R.& Negro J. J.. 1998Digital imaging for colour measurement in ecological research. Ecol. Lett. 1, 151–154. (doi:10.1046/j.1461-0248.1998.00034.x). Crossref, ISIGoogle Scholar
    • Vinther J., Briggs D. E. G., Prum R. O.& Saranathan V.. 2008The colour of fossil feathers. Biol. Lett. 4, 522–525. (doi:10.1098/rsbl.2008.0302). Link, ISIGoogle Scholar
    • White T.. 1885Remarks of the feathers of two species of moa. Trans. Proc. N. Z. Inst. 18, 83–84. Google Scholar
    • Willerslev E., Hanson A. J., Binladen J., Brand T. B., Gilbert M. T. P., Shapiro D., Bunce M., Wuif C., Gilichinsky D. A.& Cooper A.. 2003Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795. (doi:10.1126/science.1084114). Crossref, PubMed, ISIGoogle Scholar
    • Wilmshurst J. M., Anderson A. J., Higham T. F. G.& Worthy T. H.. 2008Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. Proc. Natl Acad. Sci. USA 105, 7676–7680. (doi:10.1073/pnas.0801507105). Crossref, PubMed, ISIGoogle Scholar
    • Wood J.. 2008Moa (Aves: Dinornithiformes) nesting material from rockshelters in the semi-arid interior of South Island, New Zealand. J. R. Soc. N. Z. 38, 115–129. Crossref, ISIGoogle Scholar
    • Wood J. R., Rawlence N. J., Rogers G. M., Austin J. J., Worthy T. H.& Cooper A.. 2008Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quat. Sci. Rev. 27, 2593–2602. (doi:10.1016/j.quascirev.2008.09.019). Crossref, ISIGoogle Scholar
    • Worthy T. H.. 1989Mummified moa remains from Mt Owen, northwest Nelson. Notornis 36, 36–38. Google Scholar
    • Worthy T. H.. 1998Quaternary fossil faunas of Otago, South Island, New Zealand. J. R. Soc. N. Z. 28, 421–521. Crossref, ISIGoogle Scholar
    • Worthy T. H.& Holdaway R. N.. 2002The lost world of the moa. Christchurch, New Zealand: Canterbury University Press. Google Scholar
    • Yue G. H.& Orban L.. 2001Rapid isolation of DNA from fresh and preserved fish scales for polymerase chain reaction. Mar. Biotechnol. 3, 199–204. (doi:10.1007/s10126-001-0010-9). Crossref, PubMed, ISIGoogle Scholar