Proceedings of the Royal Society B: Biological Sciences
Restricted accessResearch articles

Warm fish with cold hearts: thermal plasticity of excitation–contraction coupling in bluefin tuna

H. A. Shiels

H. A. Shiels

Faculty of Life Sciences, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9PL, UK

Tuna Research and Conservation Center, Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA

[email protected]

Google Scholar

Find this author on PubMed

,
A. Di Maio

A. Di Maio

Tuna Research and Conservation Center, Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA

Google Scholar

Find this author on PubMed

,
S. Thompson

S. Thompson

Tuna Research and Conservation Center, Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA

Google Scholar

Find this author on PubMed

and
B. A. Block

B. A. Block

Tuna Research and Conservation Center, Hopkins Marine Station of Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA

Google Scholar

Find this author on PubMed

    Bluefin tuna have a unique physiology. Elevated metabolic rates coupled with heat exchangers enable bluefin tunas to conserve heat in their locomotory muscle, viscera, eyes and brain, yet their hearts operate at ambient water temperature. This arrangement of a warm fish with a cold heart is unique among vertebrates and can result in a reduction in cardiac function in the cold despite the elevated metabolic demands of endothermic tissues. In this study, we used laser scanning confocal microscopy and electron microscopy to investigate how acute and chronic temperature change affects tuna cardiac function. We examined the temporal and spatial properties of the intracellular Ca2+ transient (Δ[Ca2+]i) in Pacific bluefin tuna (Thunnus orientalis) ventricular myocytes at the acclimation temperatures of 14°C and 24°C and at a common test temperature of 19°C. Acute (less than 5 min) warming and cooling accelerated and slowed the kinetics of Δ[Ca2+]i, indicating that temperature change limits cardiac myocyte performance. Importantly, we show that thermal acclimation offered partial compensation for these direct effects of temperature. Prolonged cold exposure (more than four weeks) increased the amplitude and kinetics of Δ[Ca2+]i by increasing intracellular Ca2+ cycling through the sarcoplasmic reticulum (SR). These functional findings are supported by electron microscopy, which revealed a greater volume fraction of ventricular SR in cold-acclimated tuna myocytes. The results indicate that SR function is crucial to the performance of the bluefin tuna heart in the cold. We suggest that SR Ca2+ cycling is the malleable unit of cellular Ca2+ flux, offering a mechanism for thermal plasticity in fish hearts. These findings have implications beyond endothermic fish and may help to delineate the key steps required to protect vertebrate cardiac function in the cold.

    References

    • 1
      Boustany A. M., Matteson R., Castleton M., Farwell C.& Block B. A. In press. Movements of pacific bluefin tuna (Thunnus orientalis) in the Eastern North Pacific revealed with archival tags. Prog. Ocean. ISIGoogle Scholar
    • 2
      Kitagawa T. B., Boustany A. M., Farwell C., Williams T. D., Casatleton M. R.& Block B. A.. 2007 Horizontal and vertical movements of juvenile bluefin tuna (Thunnus orientalis) in relation to seasons and oceanographic conditions in the eastern Pacific Ocean. Fish. Oceanogr. 16, 409–421.doi:10.1111/j.1365-2419.2007.00441.x (doi:10.1111/j.1365-2419.2007.00441.x). Crossref, ISIGoogle Scholar
    • 3
      Blank J. M., Morrissette J. M., Farwell C. J., Price M., Schallert R. J.& Block B. A.. 2007 Temperature effects on metabolic rate of juvenile Pacific bluefin tuna Thunnus orientalis. J. Exp. Biol. 210, 4254–4261.doi:10.1242/jeb.005835 (doi:10.1242/jeb.005835). Crossref, PubMed, ISIGoogle Scholar
    • 4
      Linthicum D. S.& Carey F. G.. 1972 Regulation of brain and eye temperatures by the bluefin tuna. Comp. Biochem. Physiol. A 43, 425–433.doi:10.1016/0300-9629(72)90201-0 (doi:10.1016/0300-9629(72)90201-0). Crossref, PubMed, ISIGoogle Scholar
    • 5
      Brill R. W.& Bushnell P. G.. 2001 The cardiovascular system of tunas. Tunas: physiology, ecology and evolution (eds , Hoar W. S., Randall D. J.& Farrell A. P.), pp. 79–120. San Diego, CA: Academic Press. Google Scholar
    • 6
      Brill R. W.. 1987 On the standard metabolic rates of tropical tunas; including the effect of body size and acute temperature-change. Fish. Bull. 85, 25–35. Google Scholar
    • 7
      Blank J. M., Morrissette J. M., Landeira-Fernandez A. M., Blackwell S. B., Williams T. D.& Block B. A.. 2004 In situ cardiac performance of Pacific bluefin tuna hearts in response to acute temperature change. J. Exp. Biol. 207, 881–890.doi:10.1242/jeb.00820 (doi:10.1242/jeb.00820). Crossref, PubMed, ISIGoogle Scholar
    • 8
      Korsmeyer K. E., Lai N. C., Shadwick R. E.& Graham J. B.. 1997 Heart rate and stroke volume contribution to cardiac output in swimming yellowfin tuna: response to exercise and temperature. J. Exp. Biol. 200, 1975–1986. Crossref, PubMed, ISIGoogle Scholar
    • 9
      Galli G. L., Shiels H. A.& Brill R. W.. 2009 Temperature sensitivity of cardiac function in pelagic fishes with different vertical mobilities: yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus), mahimahi (Coryphaena hippurus), and swordfish (Xiphias gladius). Physiol. Biochem. Zool. 82, 280–290.doi:10.1086/597484 (doi:10.1086/597484). Crossref, PubMed, ISIGoogle Scholar
    • 10
      Vornanen M., Shiels H. A.& Farrell A. P.. 2002 Plasticity of excitation–contraction coupling in fish cardiac myocytes. Comp. Biochem. Physiol. A 132, 827–846. Crossref, PubMed, ISIGoogle Scholar
    • 11
      Aho E.& Vornanen M.. 1998 CaATPase activity and Ca uptake by sarcoplasmic reticulum in fish heart: effects of thermal acclimation. J. Exp. Biol. 201, 525–532. Crossref, PubMed, ISIGoogle Scholar
    • 12
      Aho E.& Vornanen M.. 1999 Contractile properties of atrial and ventricular myocardium of the heart of rainbow trout (Oncorhynchus mykiss): effects of thermal acclimation. J. Exp. Biol. 202, 2663–2677. Crossref, PubMed, ISIGoogle Scholar
    • 13
      Keen J. E., Farrell A. P., Tibbits G. F.& Brill R. W.. 1992 Cardiac physiology in tunas. 2. Effect of ryanodine, calcium, and adrenaline on force frequency relationships in atrial strips from skipjack tuna, Katsuwonus pelamis. Can. J. Zool. 70, 1211–1217.doi:10.1139/z92-168 (doi:10.1139/z92-168). Crossref, ISIGoogle Scholar
    • 14
      Keen J. E., Vianzon D. M., Farrell A. P.& Tibbits G. F.. 1994 Effect of temperature and temperature-acclimation on the ryanodine sensitivity of the trout myocardium. J. Comp. Physiol. B 164, 438–443.doi:10.1007/BF00714580 (doi:10.1007/BF00714580). Crossref, ISIGoogle Scholar
    • 15
      Rocha M. L., Rantin F. T.& Kalinin A. L.. 2007 Importance of the sarcoplasmic reticulum and adrenergic stimulation on the cardiac contractility of the neotropical teleost Synbranchus marmoratus under different thermal conditions. J. Comp. Physiol. B 177, 713–721.doi:10.1007/s00360-007-0166-3 (doi:10.1007/s00360-007-0166-3). Crossref, PubMed, ISIGoogle Scholar
    • 16
      Shiels H. A., Freund E. V., Farrell A. P.& Block B. A.. 1999 The sarcoplasmic reticulum plays a major role in isometric contraction in atrial muscle of yellowfin tuna. J. Exp. Biol. 202, 881–890. Crossref, PubMed, ISIGoogle Scholar
    • 17
      Castilho P. C., Landeira-Fernandez A. M., Morrissette J.& Block B. A.. 2007 Elevated CaATPase (SERCA2) activity in tuna hearts: comparative aspects of temperature dependence. Comp. Biochem. Physiol. A 148, 124–132. Crossref, PubMed, ISIGoogle Scholar
    • 18
      Landeira-Fernandez A. M., Morrissette J. M., Blank J. M.& Block B. A.. 2004 Temperature dependence of the Ca2+-ATPase (SERCA2) in the ventricles of tuna and mackerel. Am. J. Physiol. 286, R398–R404. Google Scholar
    • 19
      Di Maio A.& Block B. A.. 2008 Ultrastructure of the sarcoplasmic reticulum in cardiac myocytes from Pacific bluefin tuna. Cell Tissue Res. 334, 121–134.doi:10.1007/s00441-008-0669-6 (doi:10.1007/s00441-008-0669-6). Crossref, PubMed, ISIGoogle Scholar
    • 20
      Shiels H. A.& White E.. 2005 Temporal and spatial properties of cellular Ca flux in trout ventricular myocytes. Am. J. Physiol. 288, R1756–R1766. Google Scholar
    • 21
      Galli G. L., Lipnick M. S.& Block B. A.. 2009 Effect of thermal acclimation on action potentials and sarcolemmal K+ channels from Pacific bluefin tuna cardiomyocytes. Am. J. Physiol. 297, R502–R509. Google Scholar
    • 22
      Shiels H. A., Vornanen M.& Farrell A. P.. 2000 Temperature-dependence of L-type Ca channel current in atrial myocytes from rainbow trout. J. Exp. Biol. 203, 2771–2780. Crossref, PubMed, ISIGoogle Scholar
    • 23
      Herve J. C., Yamaoka K., Twist V. W., Powell T., Ellory J. C.& Wang L. C.. 1992 Temperature dependence of electrophysiological properties of guinea pig and ground squirrel myocytes. Am. J. Physiol. 263, 177–184. Google Scholar
    • 24
      Puglisi J. L., Yuan W. L., Bassani J. W. M.& Bers D. M.. 1999 Ca influx through Ca channels in rabbit ventricular myocytes during action potential clamp: influence of temperature. Circ. Res. 85, E7–E16. Crossref, PubMed, ISIGoogle Scholar
    • 25
      Hove-Madsen L., Llach A.& Tort L.. 2001 The function of the sarcoplasmic reticulum is not inhibited by low temperatures in trout atrial myocytes. Am. J. Physiol. 281, R1902–R1906. Google Scholar
    • 26
      Shiels H. A., Vornanen M.& Farrell A. P.. 2002 Temperature dependence of cardiac sarcoplasmic reticulum function in rainbow trout myocytes. J. Exp. Biol. 205, 3631–3639. Crossref, PubMed, ISIGoogle Scholar
    • 27
      Sitsapesan R., Montgomery R. A. P., Macleod K. T.& Williams A. J.. 1991 Sheep cardiac sarcoplasmic-reticulum calcium-release channels: modification of conductance and gating by temperature. J. Physiol. 434, 469–488. Crossref, PubMed, ISIGoogle Scholar
    • 28
      Shiels H. A., Paajanen V.& Vornanen M.. 2006 Sarcolemmal ion currents and sarcoplasmic reticulum Ca2+ content in ventricular myocytes from the cold stenothermic fish, the burbot (Lota lota). J. Exp. Biol. 209, 3091–3100.doi:10.1242/jeb.02321 (doi:10.1242/jeb.02321). Crossref, PubMed, ISIGoogle Scholar
    • 29
      Graham M. S.& Farrell A. P.. 1989 The effect of temperature-acclimation and adrenaline on the performance of a perfused trout heart. Physiol. Zool. 62, 38–61. CrossrefGoogle Scholar
    • 30
      Haverinen J.& Vornanen M.. 2009 Responses of action potential and K+ currents to temperature acclimation in fish hearts: phylogeny or thermal preferences? Physiol. Biochem. Zool. 82, 468–482.doi:10.1086/590223 (doi:10.1086/590223). Crossref, PubMed, ISIGoogle Scholar
    • 31
      Shiels H. A.& Farrell A. P.. 1997 The effect of temperature and adrenaline on the relative importance of the sarcoplasmic reticulum in contributing Ca2+ to force development in isolated ventricular trabeculae from rainbow trout. J. Exp. Biol. 200, 1607–1621. Crossref, PubMed, ISIGoogle Scholar
    • 32
      Bowler K.& Tirri R.. 1990 Temperature dependence of the heart isolated from the cold or warm acclimated perch (Perca fluviatilis). Comp. Biochem. Physiol. A 96, 177–180.doi:10.1016/0300-9629(90)90061-V (doi:10.1016/0300-9629(90)90061-V). Crossref, ISIGoogle Scholar
    • 33
      Fabiato A.. 1983 Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245, 1–14. Crossref, PubMed, ISIGoogle Scholar
    • 34
      Shiels H. A., Blank J. M., Farrell A. P.& Block B. A.. 2004 Electrophysiological properties of the L-type Ca2+ current in cardiomyocytes from bluefin tuna and Pacific mackerel. Am. J. Physiol. 286, R659–R668. Google Scholar
    • 35
      Cheng H., Lederer W. J.& Cannell M. B.. 1993 Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262, 740–744.doi:10.1126/science.8235594 (doi:10.1126/science.8235594). Crossref, PubMed, ISIGoogle Scholar
    • 36
      Loughrey C. M., MacEachern K. E., Cooper J.& Smith G. L.. 2003 Measurement of the dissociation constant of Fluo-3 for Ca2+ in isolated rabbit cardiomyocytes using Ca2+ wave characteristics. Cell Calcium 34, 1–9.doi:10.1016/S0143-4160(03)00012-5 (doi:10.1016/S0143-4160(03)00012-5). Crossref, PubMed, ISIGoogle Scholar
    • 37
      Woodruff M. L., Sampath A. P., Matthews H. R., Krasnoperova N. V., Lem J.& Fain G. L.. 2002 Measurement of cytoplasmic calcium concentration in the rods of wild-type and transducin knock-out mice. J. Physiol. 542, 843–854.doi:10.1113/jphysiol.2001.013987 (doi:10.1113/jphysiol.2001.013987). Crossref, PubMed, ISIGoogle Scholar
    • 38
      Belke D. D., Milner R. E.& Wang L. C.. 1991 Seasonal variations in the rate and capacity of cardiac SR calcium accumulation in a hibernating species. Cryobiology 28, 354–363.doi:10.1016/0011-2240(91)90042-M (doi:10.1016/0011-2240(91)90042-M). Crossref, PubMed, ISIGoogle Scholar
    • 39
      Walli A., Teo S. T. H., Boustany A., Farwell C. J., Williams T., Dewar H., Prince E.& Block B. A.. 2009 Seasonal movements, aggregations and diving behavior of Atlantic bluefin tuna (Thunnus thynnus) revealed with archival tags. PLoS ONE 4, e6151. Crossref, PubMed, ISIGoogle Scholar
    • 40
      Dibb K. M., Hagarty C. L., Loudon A. S.& Trafford A. W.. 2005 Photoperiod-dependent modulation of cardiac excitation contraction coupling in the Siberian hamster. Am. J. Physiol. 288, R607–R614. Google Scholar
    • 41
      Yatani A., Kim S. J., Kudej R. K., Wang Q., Depre C., Irie K., Kranias E. G., Vatner S. F.& Vatner D. E.. 2004 Insights into cardioprotection obtained from study of cellular Ca2+ handling in myocardium of true hibernating mammals. Am. J. Physiol. 286, H2219–H2228. Google Scholar
    • 42
      Wier W. G.& Balke C. W.. 1999 Ca2+ release mechanisms, Ca2+ sparks, and local control of excitation–contraction coupling in normal heart muscle. Circ. Res. 85, 770–776. Crossref, PubMed, ISIGoogle Scholar
    • 43
      Tiitu V.& Vornanen M.. 2002 Regulation of cardiac contractility in a stenothermal fish, the burbot (Lota lota). J. Exp. Biol. 205, 1597–1606. Crossref, PubMed, ISIGoogle Scholar
    • 44
      Birkedal R., Christopher J., Thistlethwaite A.& Shiels H. A.. 2009 Temperature acclimation has no effect on ryanodine receptor expression or subcellular localization in rainbow trout heart. J. Comp. Physiol. B 179, 961–969.doi:10.1007/s00360-009-0377-x (doi:10.1007/s00360-009-0377-x). Crossref, PubMed, ISIGoogle Scholar
    • 45
      Tiitu V.& Vornanen M.. 2003 Ryanodine and dihydropyridine receptor binding in ventricular cardiac muscle of fish with different temperature preferences. J. Comp. Physiol. B 173, 285–291.doi:10.1007/s00360-003-0334-z (doi:10.1007/s00360-003-0334-z). Crossref, PubMed, ISIGoogle Scholar
    • 46
      Korajoki H.& Vornanen M.. 2009 Expression of calsequestrin in atrial and ventricular muscle of thermally acclimated rainbow trout. J. Exp. Biol. 212, 3403–3414.doi:10.1242/jeb.031617 (doi:10.1242/jeb.031617). Crossref, PubMed, ISIGoogle Scholar
    • 47
      Driedzic W. R.& Gesser H.. 1994 Energy-metabolism and contractility in ectothermic vertebrate hearts: hypoxia, acidosis, and low-temperature. Physiol. Rev. 74, 221–258. Crossref, PubMed, ISIGoogle Scholar