Abstract
Identification of the causes underlying the under-representation of women and minorities in academia is a source of ongoing concern and controversy. This is a critical issue in ensuring the openness and diversity of academia; yet differences in personal experiences and interpretations have mired it in controversy. We construct a simple model of the academic career that can be used to identify general trends, and separate the demographic effects of historical differences from ongoing biological or cultural gender differences. We apply the model to data on academics collected by the National Science Foundation (USA) over the past three decades, across all of science and engineering, and within six disciplines (agricultural and biological sciences, engineering, mathematics and computer sciences, physical sciences, psychology, and social sciences). We show that the hiring and retention of women in academia have been affected by both demographic inertia and gender differences, but that the relative influence of gender differences appears to be dwindling for most disciplines and career transitions. Our model enables us to identify the two key non-structural bottlenecks restricting female participation in academia: choice of undergraduate major and application to faculty positions. These transitions are those in greatest need of detailed study and policy development.
References
- 1Pew Research Center Global Attitudes Project. 2010 Gender equality universally embraced, but inequalities acknowledged. See www.pewglobal.org/2010/07/01/gender-equality. Google Scholar
- 2
Nelson D. J.& Rogers D. C. . 2005 A national analysis of diversity in science and engineering faculties at research universities. Norman, OK: University of Oklahoma. Google Scholar - 3
Sapienza P., Zingales L.& Maestripieri D. . 2009 Gender differences in financial risk aversion and career choices are affected by testosterone. Proc. Natl Acad. Sci. USA 106, 15 268–15 273. doi:10.1073/pnas.0907352106 (doi:10.1073/pnas.0907352106). Crossref, Web of Science, Google Scholar - 4
Konrad A. M., Ritchie J. E., Lieb P.& Corrigall E. . 2000 Sex differences and similarities in job attribute preferences: a meta-analysis. Psychol. Bull. 126, 593–641. doi:10.1037/0033-2909.126.4.593 (doi:10.1037/0033-2909.126.4.593). Crossref, PubMed, Web of Science, Google Scholar - 5
Ceci S. J.& Williams W. M. . 2010 Sex differences in math-intensive fields. Curr. Dir. Psychol. Sci. 19, 275–279. doi:10.1177/0963721410383241 (doi:10.1177/0963721410383241). Crossref, PubMed, Web of Science, Google Scholar - 6
van Anders S. M. . 2004 Why the academic pipeline leaks: fewer men than women perceive barriers to becoming professors. Sex Roles 51, 511–521. doi:10.1007/s11199-004-5461-9 (doi:10.1007/s11199-004-5461-9). Crossref, Web of Science, Google Scholar - 7
Budden A. E., Tregenza T., Aarssen L. W., Koricheva J., Leimu R.& Lortie C. J. . 2008 Double-blind review favours increased representation of female authors. Trends Evol. Ecol. 23, 4–6. doi:10.1016/j.tree.2007.07.008 (doi:10.1016/j.tree.2007.07.008). Crossref, PubMed, Web of Science, Google Scholar - 8
Steinpreis R. E., Anders K. A.& Ritzke D. . 1999 The impact of gender on the review of the curricula vitae of job applicants and tenure candidates: a national empirical study. Sex Roles 41, 509–528. doi:10.1023/A:1018839203698 (doi:10.1023/A:1018839203698). Crossref, Web of Science, Google Scholar - 9
Trix F.& Psenka C. . 2003 Exploring the color of glass: letters of recommendation for female and male medical faculty. Discourse Soc. 14, 191–220. doi:10.1177/0957926503014002277 (doi:10.1177/0957926503014002277). Crossref, Web of Science, Google Scholar - 10
Ceci S. J., Williams W. M.& Barnett S. M. . 2009 Women's underrepresentation in science: sociocultural and biological considerations. Psychol. Bull. 135, 218–261. doi:10.1037/a0014412 (doi:10.1037/a0014412). Crossref, PubMed, Web of Science, Google Scholar - 11
Ceci S. J.& Williams W. M. . 2011 Understanding current causes of women's underrepresentation in science. Proc. Natl Acad. Sci. USA 108, 3157–3162. doi:10.1073/pnas.1014871108 (doi:10.1073/pnas.1014871108). Crossref, PubMed, Web of Science, Google Scholar - 12
Hill C.& Corbett C. & Rose St, A. 2010 Why so few? Women in science, technology, engineering, and mathematics. Washington, DC: American Association of University Women. Google Scholar - 13
Shalala D. E., 2006 Beyond bias and barriers: fulfilling the potential of women in academic science and engineering. Washington, DC: National Academies Press. Google Scholar - 14
Feinberg W. E. . 1984 At a snail's pace: time to equality in simple models of affirmative action programs. Am. J. Sociol. 90, 168–181. (doi:10.1086/228052). Crossref, Web of Science, Google Scholar - 15
Hargens L. L.& Long J. S. . 2002 Demographic inertia and women's representation among faculty in higher education. J. Higher Educ. 73, 494–517. doi:10.1353/jhe.2002.0037 (doi:10.1353/jhe.2002.0037). Crossref, Web of Science, Google Scholar - 16
Hannan M. T.& Freeman J. . 1977 The population ecology of organizations. Am. J. Sociol. 82, 929–964. doi:10.1086/226424 (doi:10.1086/226424). Crossref, Web of Science, Google Scholar - 17
Hannan M. T.& Freeman J. . 1984 Structural inertia and organizational change. Am. Sociol. Rev. 49, 149–164. doi:10.2307/2095567 (doi:10.2307/2095567). Crossref, Web of Science, Google Scholar - 18
Wolfinger N. H., Mason M. A.& Goulden M. . 2008 Problems in the pipeline: gender, marriage, and fertility in the ivory tower. J. Higher Educ. 79, 388–405. Crossref, Web of Science, Google Scholar - 19
Xie Y.& Shauman K. A. . 2003 Women in science: career processes and outcomes. Cambridge, MA: Harvard University Press. Google Scholar - 20
Xie Y. . 1995 A demographic approach to studying the process of becoming a scientist/engineer. In Careers in science and technology: an international perspective (ed. National Research Council), pp. 43–57. Washington, DC: National Academies Press. Google Scholar - 21
Marschke R., Laursen S., Nielsen J. M.& Rankin P. . 2007 Demographic inertia revisited: an immodest proposal to achieve equitable gender representation among faculty in higher education. J. Higher Educ. 78, 1–26. doi:10.1353/jhe.2007.0003 (doi:10.1353/jhe.2007.0003). Crossref, Web of Science, Google Scholar - 22NSB. 2010 National Science Board, Science and Engineering Indicators 2010. Publication 10-01. See www.nsf.gov/statistics/seind10. Google Scholar
- 23
Stephan P.& Ma J. . 2005 The increased frequency and duration of the postdoctorate career stage. Am. Econ. Rev. 95, 71–75. doi:10.1257/000282805774669619 (doi:10.1257/000282805774669619). Crossref, Web of Science, Google Scholar - 24NSF. 2008 National Science Foundation, Division of Science Resources Statistics, Postdoc Participation of Science, Engineering, and Health Doctorate Recipients. Publication 08-307. See www.nsf.gov/statistics/infbrief/nsf08307. Google Scholar
- 25AAUP. 1990 American Association of University Professors, Policy Documents and Reports. See www.aaup.org/AAUP/pubsres/policydocs/contents/1940statement.htm. Google Scholar
- 26
Hopkins N. . 2006 Diversification of a university faculty: observations on hiring women faculty in the schools of science and engineering at MIT. MIT Faculty Newsl. 18, 16–23. See http://web.mit.edu/fnl/volume/184/hopkins.html. Google Scholar - 27
Martinez E. D., 2007 Falling off the academic bandwagon EMBO Rep.. 8, 977–981. doi:10.1038/sj.embor.7401110 (doi:10.1038/sj.embor.7401110). Google Scholar - 28National Research Council (NRC). 2009 Gender differences at critical transitions in the careers of science, engineering, and mathematics faculty. Washington, DC: The National Academies Press. Google Scholar
- 29NSF. 2009 National Science Foundation, Division of Science Resources Statistics, Women, Minorities, and Persons with Disabilities in Science and Engineering. Publication 09-305. See www.nsf.gov/statistics/wmpd. Google Scholar
- 30
Handelsman J., 2005 More women in science. Science 309, 1190–1191. doi:10.1126/science.1113252 (doi:10.1126/science.1113252). Crossref, PubMed, Web of Science, Google Scholar