Proceedings of the Royal Society B: Biological Sciences
Restricted accessResearch articles

Virtual endocranial cast of earliest Eocene Diacodexis (Artiodactyla, Mammalia) and morphological diversity of early artiodactyl brains

M. J. Orliac

M. J. Orliac

ISE-M, Université Montpellier2, Place Eugène Bataillon, 34095 Montpellier cedex 05, France

Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium

[email protected]

Google Scholar

Find this author on PubMed

and
E. Gilissen

E. Gilissen

Department of African Zoology, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium

Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, 1070 Brussels, Belgium

Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA

Google Scholar

Find this author on PubMed

    The study of brain evolution, particularly that of the neocortex, is of primary interest because it directly relates to how behavioural variations arose both between and within mammalian groups. Artiodactyla is one of the most diverse mammalian clades. However, the first 10 Myr of their brain evolution has remained undocumented so far. Here, we used high-resolution X-ray computed tomography to investigate the endocranial cast of Diacodexis ilicis of earliest Eocene age. Its virtual reconstruction provides unprecedented access to both metric parameters and fine anatomy of the most complete endocast of the earliest artiodactyl. This picture is assessed in a broad comparative context by reconstructing endocasts of 14 other Early and Middle Eocene representatives of basal artiodactyls, allowing the tracking of the neocortical structure of artiodactyls back to its simplest pattern. We show that the earliest artiodactyls share a simple neocortical pattern, so far never observed in other ungulates, with an almond-shaped gyrus instead of parallel sulci as previously hypothesized. Our results demonstrate that artiodactyls experienced a tardy pulse of encephalization during the Late Neogene, well after the onset of cortical complexity increase. Comparisons with Eocene perissodactyls show that the latter reached a high level of cortical complexity earlier than the artiodactyls.

    References

    • 1
      Anthony R.& de Grzybowski J.. 1931 Le neopallium des Suides. Etude de son développement et interprétation de ses plissements. Arch. Zool. Exp. Gen. 74, 1–24. Google Scholar
    • 2
      Anthony R.& de Grzybowski J.. 1936 Le neopallium du mouton. Etude de son développement et interprétation de ses plissements. J. Anat. Lond. 71, 41–53. PubMedGoogle Scholar
    • 3
      Edinger T.. 1966 Brains from 40 million years of camelid history. Evolution of the forebrain, phylogenesis and ontogenesis of the forebrain (eds , Hassler R.& Stephan H.), pp. 153–162. New York, NY: Plenum Press. Google Scholar
    • 4
      Eisenberg J. F.. 1981 The mammalian radiations. Chicago, IL: University of Chicago Press. Google Scholar
    • 5
      Marino L.. 1998 A comparison of encephalization between odontocete cetaceans and anthropoid primates. Brain Behav. Evol. 51, 230–238.doi:10.1159/000006540 (doi:10.1159/000006540). Crossref, PubMed, ISIGoogle Scholar
    • 6
      Marino L., Uhen M. D., Pyenson N. D.& Frohlich B.. 2003 Reconstruction cetacean brain evolution using computed tomography. Anat. Rec. 272, 107–117.doi:10.1002/ar.b.10018 (doi:10.1002/ar.b.10018). CrossrefGoogle Scholar
    • 7
      Schultz S.& Dunbar R.. 2010 Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc. Natl Acad. Sci. USA 107, 21 582–21 586.doi:10.1073/pnas.1005246107 (doi:10.1073/pnas.1005246107). Crossref, ISIGoogle Scholar
    • 8
      Rose K. D.. 2006 The beginning of the age of mammals. Baltimore, MD: The John Hopkins University Press. Google Scholar
    • 9
      Rose K. D., Chew A. E., Dunn R. H., Kraus M. J., Fricke H. C.& Zack S. P.. 2012 Earliest Eocene mammalian fauna from the Paleocene–Eocene thermal maximum at Sand Creek Divide, Southern Big Horn Basin, Wyoming. Univ. Michigan Pap. Paleontol. 36, 1–122. Google Scholar
    • 10
      Sigogneau-Russell D.& Russell D. E.. 1983 A new dichobunoid artiodactyl (Mammalia) from the Eocene of North-West Pakistan—III Reconstitution du moulage endocrânien. Proc. K. Ned. Akad. B Phys. 3, 319–330. Google Scholar
    • 11
      Dechaseaux C.. 1969 Moulages endocrâniens d'artiodactyles primitifs, essai sur l'histoire du néopallium. Ann. Paleontol. (Vert.) 55, 195–248. Google Scholar
    • 12
      Dechaseaux C.. 1970 Les grandes lignes de l'histoire de la fissuration du néopallium des artiodactyles. Comptes Rendus Acad. Sci. Paris D 268, 653–655. Google Scholar
    • 13
      Dechaseaux C.. 1973 Essais de paléoneurologie. Ann. Paleontol. (Vert.) 59, 115–132. Google Scholar
    • 14
      Cifelli R. L.. 1981 Patterns of evolution among Artiodactyla and Perissodactyla (Mammalia). Evolution 35, 433–440.doi:10.2307/2408192 (doi:10.2307/2408192). Crossref, PubMed, ISIGoogle Scholar
    • 15
      Gatesy J.. 2009 Whales and even toad ungulates. The timetree of life (eds , Hedges S. B.& Kumar S.), pp. 511–515. Oxford, UK: Oxford Biology. Google Scholar
    • 16
      Janis C.. 2007 Artiodactyla paleoecology and evolutionary trends. The evolution of artiodactyls (eds , Prothero D. R.& Foss S.), pp. 292–315. Baltimore, MD: Johns Hopkins University Press. Google Scholar
    • 17
      Gingerich P. D.. 1989 New earliest Wasatchian mammalian fauna from Eocene of northwestern Wyoming, composition and diversity in a rarely sampled high-floodplain assemblage. Univ. Michigan Pap. Paleontol. 28, 1–97. Google Scholar
    • 18
      Geisler J. H., Theodor J. M., Uhen M. D.& Foss S. E.. 2007 Phylogenetic relationships of cetaceans to terrestrial artiodactyls. The evolution of artiodactyls (eds , Prothero D. R.& Foss S.), pp. 19–31. Baltimore, MD : Johns Hopkins University Press. Google Scholar
    • 19
      Spaulding M., O'Leary M. A.& Gatesy J.. 2009 Relationships of Cetacea (Artiodactyla) among mammals, increased taxon sampling alters interpretations of key fossils and character evolution. PLoS ONE 4, 1–14.doi:10.1371/journal.pone.0007062 (doi:10.1371/journal.pone.0007062). Crossref, ISIGoogle Scholar
    • 20
      Orliac M. J., Boisserie J.-R., MacLatchy L.& Lihoreau F.. 2010 Earliest Miocene hippopotamids constrain phylogenetic and spaciotemporal settings of hippopotamid origin. Proc. Natl Acad. Sci. USA 107, 11 871–11 876.doi:10.1073/pnas.1001373107 (doi:10.1073/pnas.1001373107). Crossref, ISIGoogle Scholar
    • 21
      Coombs M. C.& Coombs W. P.. 1982 Anatomy of the ear region of four Eocene artiodactyls, Gobiohyus, ?Helohyus, Diacodexis and Homacodon. J. Vert. Paleontol. 2, 219–236.doi:10.1080/02724634.1982.10011931 (doi:10.1080/02724634.1982.10011931). CrossrefGoogle Scholar
    • 22
      Gunnell G. F., Murphey P. C., Stucky R. K., Townsend K. E. B., Robinson P., Zonneveld J.-P.& Bartels W. S.. 2009 Biostratigraphy and biochronology of the latest Wasatchian, Bridgerian, and Uintan North American land mammal ‘ages.’. Mus. Northern Arizona Bull. 65, 279–330. Google Scholar
    • 23
      Macrini T. E.. 2009 Description of a digital cranial endocast of Bathygenys reevesi (Merocoidodontidae, Oreodontoidea) and implications for apomorphy based diagnosis of isolated, natural endocasts. J. Vert. Paleontol. 29, 1199–1211.doi:10.1671/039.029.0413 (doi:10.1671/039.029.0413). Crossref, ISIGoogle Scholar
    • 24
      Theodor J. M., Erfurt J.& Métais G.. 2007 The earliest artiodactyls. The evolution of Artiodactyla (eds , Prothero D. R.& Foss S.), pp. 32–58. Baltimore, MD: Johns Hopkins University Press. Google Scholar
    • 25
      Geisler J. G. M.& Theodor J. M.. 2009 Hippopotamus and whale phylogeny. Nature 458, 1190–1194.doi:10.1038/nature00776 (doi:10.1038/nature00776). Crossref, ISIGoogle Scholar
    • 26
      Orliac M. J.& Ducrocq S.. 2011 Eocene raoellids (Mammalia, Cetartiodactyla) outside the Indian subcontinent, palaeogeographical implications. Geol. Mag. 149, 80–92.doi:10.1017/S0016756811000586 (doi:10.1017/S0016756811000586). Crossref, ISIGoogle Scholar
    • 27
      Butler A. B.& Hodos W.. 1996 Comparative vertebrate neuroanatomy, evolution and adaptation. New York, NY: Wiley-Liss. Google Scholar
    • 28
      Nieuwenhuys R., Ten Donkelaar H. J.& Nicholson C.. 1998 The central nervous system of vertebrates. Berlin, Germany: Springer. CrossrefGoogle Scholar
    • 29
      Macrini T. E., Rougier G. W.& Rowe T.. 2007 Description of a cranial endocast from the fossil mammal Vincelestes neuquenianus (Theriiformes) and its relevance to the evolution of endocranial characters in therians. Anat. Rec. 290, 875–892.doi:10.1002/ar.20551 (doi:10.1002/ar.20551). CrossrefGoogle Scholar
    • 30
      Welker W.. 1990 Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. Comparative structure and evolution of cerebral cortex part II (eds , Jones E. G.& Peters A.), pp. 3–136. New York, NY: Plenum Press. Google Scholar
    • 31
      Kielan-Jaworowska Z., Cifelli R. L.& Luo Z. -X.. 2004 Mammals from the age of dinosaurs, origins, evolution, and structure. New York, NY: Columbia University Press. CrossrefGoogle Scholar
    • 32
      Rowe T. B., Macrini T. E.& Luo Z. X.. 2011 Fossil evidence on origin of the mammalian brain. Science 332, 955–957.doi:10.1126/science.1203117 (doi:10.1126/science.1203117). Crossref, PubMed, ISIGoogle Scholar
    • 33
      Striedter G. F.. 2005 Principles of brain evolution. Sunderland, MA: Sinauer Associates. Google Scholar
    • 34
      Jerison H. J.. 1973 Evolution of brain and intelligence. New York, NY: Academic Press. Google Scholar
    • 35
      Asher R. J.& Helgen K. M.. 2010 Nomenclature and placental mammal phylogeny. BMC Evol. Biol. 10, 102.doi:10.1186/1471-2148-10-102 (doi:10.1186/1471-2148-10-102). Crossref, PubMed, ISIGoogle Scholar
    • 36
      Meredith R. W., et al. 2011 Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524.doi:10.1126/science.1211028 (doi:10.1126/science.1211028). Crossref, PubMed, ISIGoogle Scholar
    • 37
      Radinsky L. B.. 1976 Oldest horse brains: more advanced than previously realized. Science 194, 626–627.doi:10.1126/science.790567 (doi:10.1126/science.790567). Crossref, PubMed, ISIGoogle Scholar
    • 38
      Orliac M. J., Gilissen E.& Argot C.. 2012 Digital cranial endocast of Hyopsodus (Mammalia, ‘Condylarthra’): a case of Paleogene terrestrial echolocation? PLoS ONE 7, e30000.doi:10.1371/journal.pone.0030000 (doi:10.1371/journal.pone.0030000). Crossref, PubMed, ISIGoogle Scholar
    • 39
      Radinsky L.. 1977 Brains of early carnivores. Paleobiology 3, 333–349. Crossref, ISIGoogle Scholar
    • 40
      Bauchot R.& Stephan H.. 1967 Encéphales et moulages endocrâniens de quelques insectivores et primates actuels. Coll. Int. Centre Natl Rech. Sci. 163, 575–586. Google Scholar
    • 41
      Sherwood C. C., Stimpson C. D., Butti C., Bonar C. J., Newton A. L., Allman J. M.& Hof P. R.. 2009 Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct. Funct. 213, 301–328.doi:10.1007/s00429-008-0198-9 (doi:10.1007/s00429-008-0198-9). Crossref, PubMed, ISIGoogle Scholar
    • 42
      Damuth J.. 1990 Problems in estimating body masses of archaic ungulates using dental measurements. Body size in mammalian paleobiology (eds , Damuth J.& MacFadden B. J.), pp. 229–253. Cambridge, UK: Cambridge University Press. Google Scholar
    • 43
      Janis C.. 1990 Correlation of cranial and dental variables with body size in ungulates and macropodoids. Body size in mammalian paleobiology (eds , Damuth J.& MacFadden B. J.), pp. 255–299. Cambridge, UK: Cambridge University Press. Google Scholar
    • 44
      Martinez J.-N.& Sudre J.. 1995 The astragalus of Paleogene artiodactyls, comparative morphology, variability and prediction of body mass. Lethaia 28, 187–209.doi:10.1111/j.1502-3931.1995.tb01612.x (doi:10.1111/j.1502-3931.1995.tb01612.x). Crossref, ISIGoogle Scholar
    • 45
      Jerison H. J.. 1970 Brain evolution: new light on old principles. Science 170, 1224–1225.doi:10.1126/science.170.3963.1224 (doi:10.1126/science.170.3963.1224). Crossref, PubMed, ISIGoogle Scholar
    • 46
      Radinsky L. B.. 1978 Evolution of brain size in carnivorous and ungulates. Am. Nat. 112, 815–831.doi:10.1086/283325 (doi:10.1086/283325). Crossref, ISIGoogle Scholar
    • 47
      Sigogneau D.. 1968 Le genre Dremotherium (Cervoidea) Anatomie du crâne, denture et moulage endocrânien. Ann. Paleontol. 54, 3–64. Google Scholar
    • 48
      Marino L., McShea D.& Uhen M. D.. 2004 The origin and evolution of large brains in toothed whales. Anat. Rec. 281A, 1247–1255.doi:10.1002/ar.a.20128 (doi:10.1002/ar.a.20128). CrossrefGoogle Scholar
    • 49
      Edinger T.. 1948 Evolution of the horse brain. Geol. Soc. Am. Mem. 25, 1–177. Google Scholar
    • 50
      Edinger T.. 1929 Die fossilen Gehirne. Zeits. Gesam. Anat. Abt. III 28, 1–249. Google Scholar
    • 51
      Ladevèze S., Missiaen P.& Smith T.. 2010 First skull of Orthaspidotherium edwardsi (Mammalia, ‘Condylarthra’) from the late Paleocene of Berru (France) and phylogenetic affinities of the enigmatic European family Pleuraspidotheriidae. J. Vert. Paleontol. 30, 1559–1578.doi:10.1080/02724634.2010.501440 (doi:10.1080/02724634.2010.501440). Crossref, ISIGoogle Scholar