Abstract
The epidemic dynamics of infectious diseases vary among cities, but it is unclear how this is caused by patterns of infectious contact among individuals. Here, we ask whether systematic differences in human mobility patterns are sufficient to cause inter-city variation in epidemic dynamics for infectious diseases spread by casual contact between hosts. We analyse census data on the mobility patterns of every full-time worker in 48 Canadian cities, finding a power-law relationship between population size and the level of organization in mobility patterns, where in larger cities, a greater fraction of workers travel to work in a few focal locations. Similarly sized cities also vary in the level of organization in their mobility patterns, equivalent on average to the variation expected from a 2.64-fold change in population size. Systematic variation in mobility patterns is sufficient to cause significant differences among cities in infectious disease dynamics—even among cities of the same size—according to an individual-based model of airborne pathogen transmission parametrized with the mobility data. This suggests that differences among cities in host contact patterns are sufficient to drive differences in infectious disease dynamics and provides a framework for testing the effects of host mobility patterns in city-level disease data.
References
- 1World Health Organization. 2008 Causes of death 2008 summary tables. Geneva, Switzerland: World Health Organization. Google Scholar
- 2World Health Organization. 2004 The global burden of disease: 2004 update. Geneva, Switzerland: World Health Organization. Google Scholar
- 3
Bartlett M . 1956 Measles periodicity and community size. J. R. Stat. Soc. A 3, 493–510. Google Scholar - 4
Grenfell B, Bjornstad O& Kappey J . 2001 Travelling waves and spatial hierarchies in measles epidemics. Nature 414, 716–723. (doi:10.1038/414716a). Crossref, PubMed, Web of Science, Google Scholar - 5
Meyers LA, Pourbohloul B, Newman M, Skowronski D& Brunham R . 2005 Network theory and SARS: predicting outbreak diversity. J. Theor. Biol. 232, 71–81. (doi:10.1016/j.jtbi.2004.07.026). Crossref, PubMed, Web of Science, Google Scholar - 6
Taylor C, Marathe A& Beckman R . 2010 Same influenza vaccination strategies but different outcomes across US cities? Int. J. Infect. Dis. 14, e792–e795. (doi:10.1016/j.ijid.2010.02.2267). Crossref, PubMed, Web of Science, Google Scholar - 7
Merler S& Ajelli M . 2010 The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proc. R. Soc. B 277, 557–565. (doi:10.1098/rspb.2009.1605). Link, Web of Science, Google Scholar - 8
Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW& Jones JH . 2010 A high-resolution human contact network for infectious disease transmission. Proc. Natl Acad. Sci. USA 107, 22 020–22 025. (doi:10.1073/pnas.1009094108). Crossref, Web of Science, Google Scholar - 9
Colizza V, Barrat A, Barthelemy M, Valleron A-J& Vespignani A . 2007 Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Med. 4, e13. (doi:10.1371/journal.pmed.0040013). Crossref, PubMed, Web of Science, Google Scholar - 10
Balcan D, 2009 Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. BMC Med. 7, 45. (doi:10.1186/1741-7015-7-45). Crossref, PubMed, Web of Science, Google Scholar - 11
Bajardi P, Poletto C, Ramasco JJ, Tizzoni M, Colizza V& Vespignani A . 2011 Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic. PLoS ONE 6, e16591. (doi.org/10.1371/journal.pone.0016591). Crossref, PubMed, Web of Science, Google Scholar - 12
González MC, Hidalgo CA& Barabasi A-L . 2008 Understanding individual human mobility patterns. Nature 453, 779–782. (doi.org/10.1038/nature06958). Crossref, PubMed, Web of Science, Google Scholar - 13
Song C, Qu Z, Blumm N& Barabási A-L . 2010 Limits of predictability in human mobility. Science 327, 1018–1021. (doi:10.1126/science.1177170). Crossref, PubMed, Web of Science, Google Scholar - 14
Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA& Grenfell BT . 2006 Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312, 447–451. (doi:10.1126/science.1125237). Crossref, PubMed, Web of Science, Google Scholar - 15
Balcan D& Vespignani A . 2011 Phase transitions in contagion processes mediated by recurrent mobility patterns. Nat. Phys. 7, 581–586. (doi:10.1038/nphys1944). Crossref, PubMed, Web of Science, Google Scholar - 16
Prigogine I . 1978 Time, structure, and fluctuations. Science 201, 777–785. (doi:10.1126/science.201.4358.777). Crossref, PubMed, Web of Science, Google Scholar - 17
Barabási A-L . 2005 The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211. (doi:10.1038/nature03459). Crossref, PubMed, Web of Science, Google Scholar - 18
Mossong J, 2008 Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5, e74. (doi:10.1371/journal.pmed.0050074). Crossref, PubMed, Web of Science, Google Scholar - 19
Newman MEJ . 2002 Spread of epidemic disease on networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. E66, 0161128. (doi:10.1103/PhysRevE.66.016128). Google Scholar - 20
Lloyd-Smith J, Schreiber SJ, Kopp PE& Getz W . 2005 Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359. (doi:10.1038/nature04153). Crossref, PubMed, Web of Science, Google Scholar - 21
Bansal S, Grenfell BT& Meyers LA . 2007 When individual behaviour matters: homogeneous and network models in epidemiology. J. R. Soc. Interface 4, 879–891. (doi:10.1098/rsif.2007.1100). Link, Web of Science, Google Scholar - 22
Eubank S, Guclu H, Kumar VSA, Marathe MV, Srinivasan A, Toroczkai Z& Wang N . 2004 Modelling disease outbreaks in realistic urban social networks. Nature 429, 180–184. (doi:10.1038/nature02541). Crossref, PubMed, Web of Science, Google Scholar - 23
Guzzetta G, Ajelli M, Yang Z& Merler S . 2011 Modeling sociodemography to capture tuberculosis transmission dynamics in a low burden setting. J. Theor. Biol. 289, 197–205. (doi:10.1016/j.jtbi.2011.08.032). Crossref, PubMed, Web of Science, Google Scholar - 24
Fumanelli L, Ajelli M, Manfredi P, Vespignani A& Merler S . 2012 Inferring the structure of social contacts from demographic data in the analysis of infectious diseases spread. PLoS Comput. Biol. 8, e1002673. (doi:10.1371/journal.pcbi.1002673). Crossref, PubMed, Web of Science, Google Scholar - 25
Colizza V& Vespignani A . 2007 Invasion threshold in heterogeneous metapopulation networks. Phys. Rev. Lett. 99, 148701. (doi:10.1103/PhysRevLett.99.148701). Crossref, PubMed, Web of Science, Google Scholar - 26
Colizza V, Pastor-Satorras R& Vespignani A . 2007 Reaction–diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276–282. (doi:10.1038/nphys560). Crossref, Web of Science, Google Scholar - 27
Colizza V& Vespignani A . 2008 Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. J. Theor. Biol. 251, 450–467. (doi:10.1016/j.jtbi.2007.11.028). Crossref, PubMed, Web of Science, Google Scholar - 28Census of Canada. 2006 Census place of work (POW) custom consortium tables. See http://hdl.handle.net/10573/41533. Google Scholar
- 29
Lloyd M . 1967 Mean crowding. J. Anim. Ecol. 36, 1–30. (doi:10.2307/3012). Crossref, Web of Science, Google Scholar - 30
Simini F, González MC, Maritan A& Barabási A-L . 2012 A universal model for mobility and migration patterns. Nature 484, 96–100. (doi:10.1038/nature10856). Crossref, PubMed, Web of Science, Google Scholar - 31
Jesse M, Ezanno P, Davis S& Heesterbeek J . 2008 A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration. J. Theor. Biol. 254, 331–338. (doi:10.1016/j.jtbi.2008.05.038). Crossref, PubMed, Web of Science, Google Scholar - 32
Bettencourt LMA, Lobo J, Helbing D, Kühnert C& West GB . 2007 Growth, innovation, scaling, and the pace of life in cities. Proc. Natl Acad. Sci. USA 104, 7301–7306. (doi:10.1073/pnas.0610172104). Crossref, PubMed, Web of Science, Google Scholar - 33
Batty M . 2008 The size, scale, and shape of cities. Science 319, 769–771. (doi:10.1126/science.1151419). Crossref, PubMed, Web of Science, Google Scholar - 34
Chowell G, Bettencourt LMA, Johnson N, Alonso WJ& Viboud C . 2008 The 1918–1919 influenza pandemic in England and Wales: spatial patterns in transmissibility and mortality impact. Proc. R. Soc. B 275, 501–509. (doi:10.1098/rspb.2007.1477). Link, Web of Science, Google Scholar - 35
Bharti N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A& Grenfell BT . 2011 Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery. Science 334, 1424–1427. (doi:10.1126/science.1210554). Crossref, PubMed, Web of Science, Google Scholar - 36
Wesolowski A, Eagle N, Tatem AJ, Smith D, Noor AM, Snow RW& Buckee CO . 2012 Quantifying the impact of human mobility on malaria. Science 338, 267–270. (doi:10.1126/science.1223467). Crossref, PubMed, Web of Science, Google Scholar - 37
Keeling MJ, Danon L, Vernon MC& House TA . 2010 Individual identity and movement networks for disease metapopulations. Proc. Natl Acad. Sci. USA 107, 8866–8870. (doi:10.1073/pnas.1000416107). Crossref, PubMed, Web of Science, Google Scholar - 38
Poletto C, Tizzoni M& Colizza V . 2012 Heterogeneous length of stay of hosts’ movements and spatial epidemic spread. Sci. Rep. 2, 476. (doi:10.1038/srep00476). Crossref, PubMed, Web of Science, Google Scholar - 39
Grenfell BT& Bolker BM . 1998 Cities and villages: infection hierarchies in a measles metapopulation. Ecol. Lett. 1, 63–70. (doi:10.1046/j.1461-0248.1998.00016.x). Crossref, Web of Science, Google Scholar - 40
Eames KTD, Tilston NL, Brooks-Pollock E& Edmunds WJ . 2012 Measured dynamic social contact patterns explain the spread of H1N1V influenza. PLoS Comput. Biol. 8, e1002425. (doi:10.1371/journal.pcbi.1002425). Crossref, PubMed, Web of Science, Google Scholar - 41
Tizzoni M, Bajardi P, Poletto C, Ramasco JJ, Balcan D, Goncalves B, Perra N, Colizza V& Vespignani A . 2012 Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med. 10, 165. (doi:10.1186/1741-7015-10-165). Crossref, PubMed, Web of Science, Google Scholar