Abstract
Polyphenisms can be adaptations to environments that are heterogeneous in space and time, but to persist they require conditional-specific advantages. The nematode Pristionchus pacificus is a facultative predator that displays an evolutionarily conserved polyphenism of its mouthparts. During development, P. pacificus irreversibly executes either a eurystomatous (Eu) or stenostomatous (St) mouth-form, which differ in the shape and number of movable teeth. The Eu form, which has an additional tooth, is more complex than the St form and is thus more highly derived relative to species lacking teeth. Here, we investigate a putative fitness trade-off for the alternative feeding-structures of P. pacificus. We show that the complex Eu form confers a greater ability to kill prey. When adults were provided with a prey diet, Eu nematodes exhibited greater fitness than St nematodes by several measures, including longevity, offspring survival and fecundity when followed by bacterial feeding. However, the two mouth-forms had similar fecundity when fed ad libitum on bacteria, a condition that would confer benefit on the more rapidly developing St form. Thus, the two forms show conditional fitness advantages in different environments. This study provides, to our knowledge, the first functional context for dimorphism in a model for the genetics of plasticity.
References
- 1
West-Eberhard MJ . 2003 Developmental plasticity and evolution. Oxford, UK: Oxford University Press. Crossref, Google Scholar - 2
West-Eberhard MJ . 2005 Developmental plasticity and the origin of species differences. Proc. Natl Acad. Sci. USA 102, 6543–6549. (doi:10.1073/pnas.0501844102). Crossref, PubMed, Web of Science, Google Scholar - 3
Moran NA . 1992 The evolutionary maintenance of alternative phenotypes. Am. Nat. 139, 971–989. (doi:10.1086/285369). Crossref, Web of Science, Google Scholar - 4
Brakefield PM& Reitsma N . 1991 Phenotypic plasticity, seasonal climate and the population of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Entomol. 16, 291–303. (doi:10.1111/j.1365-2311.1991.tb00220.x). Crossref, Web of Science, Google Scholar - 5
Stibor H . 1992 Predator induced life-history shifts in a freshwater cladoceran. Oecologia 92, 162–165. (doi:10.1007/BF00317358). Crossref, PubMed, Web of Science, Google Scholar - 6
Pfennig DW . 1990 The adaptive significance of an envrionmentally-cued developmental switch in an anuran tadpole. Oecologia 85, 101–107. (doi:10.1007/BF00317349). Crossref, PubMed, Web of Science, Google Scholar - 7
Ragsdale EJ, Müller MR, Rödelsperger C& Sommer RJ . 2013 A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155, 922–933. (doi:10.1016/j.cell.2013.09.054). Crossref, PubMed, Web of Science, Google Scholar - 8
West-Eberhard MJ . 1989 Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278. (doi:10.1146/annurev.es.20.110189.001341). Crossref, Google Scholar - 9
Smith TB& Skúlason S . 1996 Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annu. Rev. Ecol. Syst. 27, 111–133. (doi:10.1146/annurev.ecolsys.27.1.111). Crossref, Google Scholar - 10
Waddington CH . 1953 Genetic assimilation of an acquired character. Evolution 7, 118–126. (doi:10.2307/2405747). Crossref, Web of Science, Google Scholar - 11
Suzuki Y& Nijhout HF . 2006 Evolution of a polyphenism by genetic accommodation. Science 311, 650–652. (doi:10.1126/science.1118888). Crossref, PubMed, Web of Science, Google Scholar - 12
Gomez-Mestre I& Buchholz DR . 2006 Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proc. Natl Acad. Sci. USA 103, 19 021–19 026. (doi:10.1073/pnas.0603562103). Crossref, Web of Science, Google Scholar - 13
Ledon-Rettig CC, Pfennig DW& Nascone-Yoder N . 2008 Ancestral variation and the potential for genetic accommodation in larval amphibians: implications for the evolution of novel feeding strategies. Evol. Dev. 10, 316–325. (doi:10.1111/j.1525-142X.2008.00240.x). Crossref, PubMed, Web of Science, Google Scholar - 14
Pfennig DW& McGee M . 2010 Resource polyphenism increases species richness: a test of the hypothesis. Phil. Trans. R. Soc. B 365, 577–591. (doi:10.1098/rstb.2009.0244). Link, Web of Science, Google Scholar - 15
Sommer RJ& McGaughran A . 2013 The nematode Pristionchus pacificus as a model system for integrative studies in evolutionary biology. Mol. Ecol. 22, 2380–2393. (doi:10.1111/mec.12286). Crossref, PubMed, Web of Science, Google Scholar - 16
Kiontke K& Fitch DHA . 2010 Phenotypic plasticity: different teeth for different feasts. Curr. Biol. 20, R710–R712. (doi:10.1016/j.cub.2010.07.009). Crossref, PubMed, Web of Science, Google Scholar - 17
Sudhaus W& Fürst von Lieven A . 2003 A phylogenetic classification and catalogue of the Diplogastridae (Secernentea, Nematoda). J. Nematode Morphol. Syst. 6, 43–90. Google Scholar - 18
Fürst von Lieven A& Sudhaus W . 2000 Comparative and functional morphology of the buccal cavity of Diplogastrina (Nematoda) and a first outline of the phylogeny of this taxon. J. Zool. Syst. Evol. Res. 38, 37–63. (doi:10.1046/j.1439-0469.2000.381125.x). Crossref, Web of Science, Google Scholar - 19
Bento G, Ogawa A& Sommer RJ . 2010 Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 466, 494–497. (doi:10.1038/nature09164). Crossref, PubMed, Web of Science, Google Scholar - 20
Herrmann M, Mayer WE& Sommer RJ . 2006 Nematodes of the genus Pristionchus are closely associated with scarab beetles and the Colorado potato beetle in Western Europe. Zoology 109, 96–108. (doi:10.1016/j.zool.2006.03.001). Crossref, PubMed, Web of Science, Google Scholar - 21
Herrmann M, Mayer WE, Hong RL, Kienle S, Minasaki R& Sommer RJ . 2007 The nematode Pristionchus pacificus (Nematoda: Diplogastridae) is associated with the Oriental beetle Exomala orientalis (Coleoptera: Scarabaeidae) in Japan. Zool. Sci. 24, 883–889. (doi:10.2108/zsj.24.883). Crossref, PubMed, Web of Science, Google Scholar - 22
Rae R, Riebesell M, Dinckelacker I, Wang Q, Herrmann M, Weller AM, Dieterich C& Sommer RJ . 2008 Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. J. Exp. Biol. 211, 1927–1936. (doi:10.1242/jeb.014944). Crossref, PubMed, Web of Science, Google Scholar - 23
Weller AM, Mayer WE, Rae R& Sommer RJ . 2010 Quantitative assessment of the nematode fauna present on Geotrupes dung beetles reveals species-rich communities with a heterogeneous distribution. J. Parasitol. 96, 525–531. (doi:10.1645/GE-2319.1). Crossref, PubMed, Web of Science, Google Scholar - 24
Serobyan V, Ragsdale EJ, Müller MR& Sommer RJ . 2013 Feeding plasticity in the nematode Pristionchus pacificus is influenced by sex and social context and is linked to developmental speed. Evol. Dev. 15, 161–170. (doi:10.1111/ede.12030). Crossref, PubMed, Web of Science, Google Scholar - 25
Bose N, Ogawa A, von Reuss SH, Yim JJ, Ragsdale EJ, Sommer RJ& Schroeder FC . 2012 Complex small-molecule architectures regulate phenotypic plasticity in a nematode. Angew. Chem. 51, 12 438–12 443. (doi:10.1002/anie.201206797). Crossref, Web of Science, Google Scholar - 26
Maynard Smith J . 1982 Evolution and the theory of games. New York, NY: Cambridge University Press. Crossref, Google Scholar - 27
Sommer RJ, Carta LK, Kim SY& Sternberg PW . 1996 Morphological, genetic and molecular description of Pristionchus pacificus n. sp. (Nematoda: Neodiplogastridae). Fund. Appl. Nematol. 19, 511–521. Google Scholar - 28
Bongers T . 1999 The Maturity Index, the evolution of nematode life-history traits, adaptive radiation and cp-scaling. Plant Soil 212, 13–22. (doi:10.1023/A:1004571900425). Crossref, Web of Science, Google Scholar - 29
Scholze VS& Sudhaus W . 2011 A pictorial key to current genus groups of ‘Rhabditidae.’. J. Nematode Morphol. Syst. 14, 105–112. Google Scholar - 30
Sudhaus W . 2011 Phylogenetic systemisation and catalogue of paraphyletic ‘Rhabditidae’ (Secernentea, Nematoda). J. Nematode Morphol. Syst. 14, 113–178. Google Scholar - 31
Choe A, von Reuss SH, Kogan D, Gasser RB, Platzer EG, Schroeder FC& Sternberg PW . 2012 Ascaroside signaling is widely conserved among nematodes. Curr. Biol. 22, 772–780. (doi:10.1016/j.cub.2012.03.024). Crossref, PubMed, Web of Science, Google Scholar - 32
Sulston J& Hodgkin J . 1988 Methods. The nematode Caenorhabditis elegans (ed.& Wood WB ), pp. 587–606. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Google Scholar - 33
Rae R, Iatsenko I, Witte H& Sommer RJ . 2010 A subset of naturally isolated Bacillus strains show extreme virulence to the free-living nematodes Caenorhabditis elegans and Pristionchus pacificus. Environ. Microbiol. 12, 3007–3021. (doi:10.1111/j.1462-2920.2010.02278.x). Crossref, PubMed, Web of Science, Google Scholar - 34
Iatsenko I, Boichenko I& Sommer RJ . 2013 Bacillus thuringiensis DB27 produces two novel toxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Appl. Environ. Micrbiol. 80, 3266–3275. (doi:10.1128/AEM.00464-14). Crossref, Web of Science, Google Scholar - 35
Fürst von Lieven A . 2002 Functional morphology, origin and phylogenetic implications of the feeding mechanisms of Tylopharynx foetida (Nematoda: Diplogastrina). Russ. J. Nematol. 10, 11–23. Web of Science, Google Scholar - 36
Bumbarger D, Riebesell M, Rödelsperger C& Sommer RJ . 2013 System-wide rewiring underlies behavioral difference in predatory and bacterial-feeding nematodes. Cell 152, 109–119. (doi:10.1016/j.cell.2012.12.013). Crossref, PubMed, Web of Science, Google Scholar - 37
Angelo G& Van Gilst MR . 2009 Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science 326, 954–958. (doi:10.1126/science.1178343). Crossref, PubMed, Web of Science, Google Scholar - 38
Seidel HS& Kimble J . 2011 The oogenic germline starvation response in C. elegans. PLoS ONE 6, e28074. (doi:10.1371/journal.pone.0028074). Crossref, PubMed, Web of Science, Google Scholar - 39
Johnson TE, Mitchell DH, Kline S, Kemal R& Foy J . 1984 Arresting development arrests aging in the nematode Caenorhabditis elegans. Mech. Ageing Dev. 28, 23–40. (doi:10.1016/0047-6374(84)90150-7). Crossref, PubMed, Web of Science, Google Scholar - 40
Baugh LR& Sternberg PW . 2006 DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Curr. Biol. 16, 780–785. (doi:10.1016/j.cub.2006.03.021). Crossref, PubMed, Web of Science, Google Scholar - 41
Pfennig DW . 1992 Polyphenism in spadefoot toad tadpoles as a locally adjusted evolutionary stable strategy. Evolution 46, 1408–1420. (doi:10.2307/2409946). PubMed, Web of Science, Google Scholar - 42
DeWitt TJ, Sih A& Sloan Wilson D . 1998 Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81. (doi:10.1016/S0169-5347(97)01274-3). Crossref, PubMed, Web of Science, Google Scholar - 43
Gilbert JJ . 1980 Further observations on developmental polymorphism and its evolution in the rotifer Brachionus calyciflorus. Freshw. Biol. 10, 281–294. (doi:10.1111/j.1365-2427.1980.tb01202.x). Crossref, Web of Science, Google Scholar - 44
Denno RF, Olmstead KL& McCloud ES . 1989 Reproductive cost of flight capability: a comparison of life history traits in wing dimorphic planthoppers. Ecol. Entomol. 14, 31–44. (doi:10.1111/j.1365-2311.1989.tb00751.x). Crossref, Web of Science, Google Scholar - 45
McCollum SA& Van Buskirk J . 1996 Costs and benefits of a predator-induced polyphenism in the gray treefrog Hyla chrysoscelis. Evolution 50, 583–593. (doi:10.2307/2410833). Crossref, PubMed, Web of Science, Google Scholar - 46
Miner BG . 2005 Evolution of feeding structure plasticity in marine invertebrate larvae: a possible trade-off between arm length and stomach size. J. Exp. Mar. Biol. Ecol. 315, 117–125. (doi:10.1016/j.jembe.2004.09.011). Crossref, Web of Science, Google Scholar - 47
Ryals PE, Smith-Somerville HE& Buhse HE . 2002 Phenotype switching in polymorphic Tetrahymena: a single-cell Jekyll and Hyde. Int. Rev. Cytol. 212, 209–238. (doi:10.1016/S0074-7696(01)12006-1). Crossref, PubMed, Google Scholar - 48
Kopp M& Tollrian R . 2003 Trophic size polyphenism in Lembadion bullinum: costs and benefits of an inducible offense. Ecology 84, 641–651. (doi:10.1890/0012-9658(2003)084[0641:TSPILB]2.0.CO;2). Crossref, Web of Science, Google Scholar - 49
Gilbert JJ . 1973 Induction and ecological significance of gigantism in the rotifer Asplanchia sieboldi. Science 181, 63–66. (doi:10.1126/science.181.4094.63). Crossref, PubMed, Web of Science, Google Scholar - 50
Collins JP& Cheek JE . 1983 Effect of food and density on development of typical and cannibalistic salamander larvae in Ambystoma tigrinum nebulosum. Am. Zool. 23, 77–84. Crossref, Google Scholar - 51
Nyman S, Wilkinson RF& Hutcherson JE . 1993 Cannibalism and size relations in a cohort of larval ringed salamanders (Ambystoma annulatum). J. Herpetol. 27, 78–84. (doi:10.2307/1564909). Crossref, Web of Science, Google Scholar - 52
Walls SC, Beatty JJ, Tissot BN, Hokit DG& Blaustein AR . 1993 Morphological variation and cannibalism in a larval salamander (Ambystoma macrodactylum columbianum). Can. J. Zool. 71, 1543–1551. (doi:10.1139/z93-218). Crossref, Web of Science, Google Scholar - 53
Moczek AP . 2007 Developmental capacitance, genetic accommodation, and adaptive evolution. Evol. Dev. 9, 299–305. (doi:10.1111/j.1525-142X.2007.00162.x). Crossref, PubMed, Web of Science, Google Scholar - 54
Kanzaki N, Ragsdale EJ, Herrmann M& Sommer RJ . 2012 Two new species of Pristionchus (Rhabditida: Diplogastridae): P. fissidentatus n. sp. from Nepal and La Réunion Island and P. elegans n. sp. from Japan. J. Nematol. 44, 80–91. PubMed, Web of Science, Google Scholar - 55
Ragsdale EJ, Kanzaki N, Röseler W, Herrmann M& Sommer RJ . 2013 Three new species of Pristionchus (Nematoda: Diplogastridae) show morphological divergence through evolutionary intermediates of a novel feeding polymorphism. Zool. J. Linnean Soc. 168, 671–698. (doi:10.1111/zoj.12041). Crossref, Web of Science, Google Scholar