The tectonic evolution of the Tibetan Plateau
Abstract
The Tibetan Plateau, between the Kunlun Shan and the Himalayas, consists of terranes accreted successively to Eurasia. The northernmost, the Songban Ganzi Terrane, was accreted to the Kunlun (Tarim-North China Terrane) along the Kunlun-Qinling Suture during the late Permian. The Qiangtang Terrane accreted to the Songban-Ganzi along the Jinsha Suture during the late Triassic or earliest Jurassic, the Lhasa Terrane to the Qiangtang along the Banggong Suture during the late Jurassic and, finally, Peninsular India to the Lhasa Terrane along the Zangbo Suture during the Middle Eocene. The Kunlun Shan, Qiangtang and Lhasa Terranes are all underlain by Precambrian continental crust at least a billion years old. The Qiangtang and Lhasa Terranes came from Gondwanaland. Substantial southward ophiolite obduction occurred across the Lhasa Terrane from the Banggong Suture in the late Jurassic and from the Zangbo Suture in the latest Cretaceous-earliest Palaeocene. Palaeomagnetic data suggest successive wide Palaeotethyan oceans during the late Palaeozoic and early Mesozoic and a Neotethys which was at least 6000 km wide during the mid-Cretaceous. Thickening of the Tibetan crust to almost double the normal thickness occurred by northward-migrating north-south shortening and vertical stretching during the mid-Eocene to earliest Miocene indentation of Asia by India; Neogene strata are almost flat-lying and rest unconformably upon Palaeogene or older strata. Since the early Miocene, the northward motion of India has been accommodated principally by north south shortening both north and south of Tibet. From early Pliocene to the Present, the Tibetan Plateau has risen by about two kilometres and has suffered east-west extension. Little, if any, of the India Eurasia convergence has been accommodated by eastward lateral extrusion.