Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
Restricted access

Magnetic microchip traps and single–atom detection

Romain Long

Romain Long

Max–Planck–Institut für Quantenoptik and Fakultät für Physik der Ludwig–Maximilians–Universität München, Schellingstraβe 4, 80799 München, Germany

Laboratoire Kastler Brossel, Département de Physique de l'Ecole Normal Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

Google Scholar

Find this author on PubMed

,
Tilo Steinmetz

Tilo Steinmetz

Max–Planck–Institut für Quantenoptik and Fakultät für Physik der Ludwig–Maximilians–Universität München, Schellingstraβe 4, 80799 München, Germany

Google Scholar

Find this author on PubMed

,
Peter Hommelhoff

Peter Hommelhoff

Max–Planck–Institut für Quantenoptik and Fakultät für Physik der Ludwig–Maximilians–Universität München, Schellingstraβe 4, 80799 München, Germany

Google Scholar

Find this author on PubMed

,
Wolfgang Hänsel

Wolfgang Hänsel

Max–Planck–Institut für Quantenoptik and Fakultät für Physik der Ludwig–Maximilians–Universität München, Schellingstraβe 4, 80799 München, Germany

Google Scholar

Find this author on PubMed

,
Theodor W. Hänsch

Theodor W. Hänsch

Max–Planck–Institut für Quantenoptik and Fakultät für Physik der Ludwig–Maximilians–Universität München, Schellingstraβe 4, 80799 München, Germany

Google Scholar

Find this author on PubMed

and
Jakob Reichel

Jakob Reichel

Max–Planck–Institut für Quantenoptik and Fakultät für Physik der Ludwig–Maximilians–Universität München, Schellingstraβe 4, 80799 München, Germany

Google Scholar

Find this author on PubMed

    Microchip traps provide a promising approach to quantum information processing and communication (QIPC) with neutral atoms: strong and complex potentials can be produced for acting on the qubit atoms, and the potentials can be scaled to higher qubit numbers by virtue of the microfabrication process. We describe experimental results that are relevant to use in QIPC, such as the transport of Bose–Einstein–condensed atomic ensembles along the chip surface with the help of a magnetic conveyor belt. The second part of the paper is devoted to single–atom detection on the chip.