Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Restricted access

Multivariable Burchnall–Chaundy theory

    Burchnall & Chaundy (Burchnall & Chaundy 1928 Proc. R. Soc. A118, 557–583) classified the (rank 1) commutative subalgebras of the algebra of ordinary differential operators. To date, there is no such result for several variables. This paper presents the problem and the current state of the knowledge, together with an interpretation in differential Galois theory. It is known that the spectral variety of a multivariable commutative ring will not be associated to a KP-type hierarchy of deformations, but examples of related integrable equations were produced and are reviewed. Moreover, such an algebro-geometric interpretation is made to fit into A.N. Parshin's newer theory of commuting rings of partial pseudodifferential operators and KP-type hierarchies which uses higher local fields.

    References

    • Álvarez-Vázquez A., Muñoz-Porras J. M. & Plaza-Martín F. J. 1998 The algebraic formalism of soliton equations over arbitrary base fields. Workshop on Abelian varieties and theta functions (Morelia, 1996), pp. 3–40, Aportaciones Mathematical Investigations, vol. 13, México, NM: Society of Mathematical Mexicana. Google Scholar
    • Andreotti A& Mayer A. 1967On period relations for Abelian integrals on algebraic curves. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4, 189–238. Google Scholar
    • Baker H.F. 1907Cambridge, UK:University Press XVI. Google Scholar
    • Barsotti I. 1983Differential equations of theta functions. Rend. Accad. Naz. Sci. XL Mem. Mat. 5, 227–276. Google Scholar
    • Berest Y.Yu& Loutsenko I.M. 1997Huygens' principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries equation. Comm. Math. Phys. 190, 113–132.doi:10.1007/s002200050235. . CrossrefGoogle Scholar
    • Braverman A, Etingof P& Gaitsgory D. 1996Quantum integrable systems and differential Galois theory. Transform. Groups. 2, 31–56.doi:10.1007/BF01234630. . CrossrefGoogle Scholar
    • Buchstaber V.M, Eilbeck J.C, Enolskii V.Z, Leykin D.V& Salerno M. 2002Multidimensional Schrödinger equations with abelian potentials. J. Math. Phys. 43, 2858–2881.doi:10.1063/1.1470708. . CrossrefGoogle Scholar
    • Buium ADifferential function fields and moduli of algebraic varieties. Lecture Notes in Mathematics 12261986Berlin, Germany:Springer. Google Scholar
    • Burchnall J.L& Chaundy T.W. 1923Commutative ordinary differential operators. Proc. Lond. Math. Soc. 21, 420–440.doi:10.1112/plms/s2-21.1.420. . CrossrefGoogle Scholar
    • Burchnall J.L& Chaundy T.W. 1928Commutative ordinary differential operators. Proc. R. Soc. A. 118, 557–583.doi:10.1098/rspa.1928.0069. . LinkGoogle Scholar
    • Chalykh O& Veselov A.P. 1990Commutative rings of partial differential operators and Lie algebras. Commun. Math. Phys. 126, 597–611.doi:10.1007/BF02125702. . CrossrefGoogle Scholar
    • Chalykh O& Veselov A.P. 1993Integrability in the theory of Schrödinger operator and harmonic analysis. Commun. Math. Phys. 152, 29–40.doi:10.1007/BF02097056. . CrossrefGoogle Scholar
    • Chalykh O.A, Feigin M.V& Veselov A.P. 1999Multidimensional Baker–Akhiezer functions and Huygens' principle. Commun. Math. Phys. 206, 533–566.doi:10.1007/PL00005521. . CrossrefGoogle Scholar
    • Chalykh O, Etingof P& Oblomkov A. 2003Generalized Lamé operators. Commun. Math. Phys. 239, 115–153.doi:10.1007/s00220-003-0869-6. . CrossrefGoogle Scholar
    • Dixmier J. 1968Sur les algèbres de Weyl. Bull. Soc. Math. France. 96, 209–242. CrossrefGoogle Scholar
    • Dubrovin B.A, Krichever I.M& Novikov S.P. 1976The Schrödinger equation in a periodic magnetic field and Riemann surfaces. Dokl. Akad. Nauk SSSR. 229, 15–19.[Transl. 1976 Soviet Math. Dokl. 17, 947–951.]. Google Scholar
    • Dupré, M.J., Glazebrook J.F. & Previato, E. 2004 C*-modules and rings of differential operators, Max-Planck Institut für Mathematik. Preprint MPIM2004-74. Google Scholar
    • Feldman J, Knörrer H& Trubowitz E. 1992There is no two-dimensional analogue of Lamé's equation. Math. Ann. 294, 295–324.doi:10.1007/BF01934328. . CrossrefGoogle Scholar
    • Floquet G. 1879Sur la théorie des équations différentielles linéaires. Ann. de l'Éc. N. VIII, Suppl., 3–132. Google Scholar
    • Gesztesy F& Weikard R. 1998Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies—an analytic approach. Bull. Amer. Math. Soc. (N.S.). 35, 271–317.doi:10.1090/S0273-0979-98-00765-4. . CrossrefGoogle Scholar
    • Horozov E. 2002The Weyl algebra, bispectral operators and dynamics of poles in integrable systems. Regul. Chaotic Dyn. 7, 399–424.doi:10.1070/RD2002v007n04ABEH000219. . CrossrefGoogle Scholar
    • Hurwitz A. 1893Über algebraische Gebilde mit eindeutingen Transformationen in sich. Math. Annalen. 41, 403–442.doi:10.1007/BF01443420. . CrossrefGoogle Scholar
    • Kasman A& Previato E. 2001Commutative partial differential operators. Advances in nonlinear mathematics and science. Physica D. 152/153, 66–77.doi:10.1016/S0167-2789(01)00159-2. . CrossrefGoogle Scholar
    • Kolchin E.RDifferential algebra and algebraic groups. Pure and Applied Mathematics vol. 541973New York, NY; London, UK:Academic Press. Google Scholar
    • Krichever I.M. 1980Elliptic solutions of the Kadomcev–Petviašvili equations, and integrable systems of particles. Funktsional. Anal. i Prilozhen. 14, 45–54.95. Google Scholar
    • Lee Min HoPseudodifferential operators of several variables and Baker functions. Lett. Math. Phys. 60, 2002a1–8.doi:10.1023/A:1015777725968. . CrossrefGoogle Scholar
    • Lee M.HTau functions associated to pseudodifferential operators of several variables. J. Nonlinear Math. Phys. 9, 2002b517–529.doi:10.2991/jnmp.2002.9.4.10. . CrossrefGoogle Scholar
    • Lee Min Ho. 2003Tau functions and residues. J. Math. Phys. 44, 5401–5409.doi:10.1063/1.1621055. . CrossrefGoogle Scholar
    • Madan M& Rosen M. 1992The automorphism group of a function field. Proc. Amer. Math. Soc. 115, 923–929.doi:10.2307/2159335. . CrossrefGoogle Scholar
    • Makar-Limanov L.G. 1978Commutativity of certain centralizers in the rings Inline Formula. Funktional. Anal. i Priložen. 4, 78. Google Scholar
    • Makar-Limanov L. 1984On automorphisms of Weyl algebra. Bull. Soc. Math. France. 112, 359–363. CrossrefGoogle Scholar
    • Matsutani, S. 2000 Hyperelliptic Solutions of KdV and KP Equations: reevaluation of Baker's study on hyperelliptic sigma functions. Preprint, nlin.SI/0007001. Google Scholar
    • Mironov A.E. 2000Commutative rings of differential operators associated with two-dimensional abelian varieties. Sibirsk. Mat. Zh. 41, 1389–1403.[Transl. Siberian Math. J.41, 1148–1161.]. Google Scholar
    • Mironov A.EReal commuting differential operators associated with two-dimensional Abelian varieties. Sibirsk. Mat. Zh. 43, 2002a126–143.[Transl. Siberian Math. J. 43, 97–113.]. Google Scholar
    • Mironov A.ECommutative rings of differential operators corresponding to multidimensional algebraic varieties. Sibirsk. Mat. Zh. 43, 2002b1102–1114.[Transl. Siberian Math. J. 43, 888–898.]. Google Scholar
    • Mukai S. 1981Duality between Inline Formula and Inline Formula with its application to Picard sheaves. Nagoya Math. J. 81, 153–175. CrossrefGoogle Scholar
    • Mulase M. 1984Complete integrability of the Kadomtsev–Petviashvili equation. Adv. Math. 54, 57–66.doi:10.1016/0001-8708(84)90036-7. . CrossrefGoogle Scholar
    • Nakayashiki A. 1991Structure of Baker-Akhiezer modules of principally polarized abelian varieties, commuting partial differential operators and associated integrable systems. Duke Math. J. 62, 315–358.doi:10.1215/S0012-7094-91-06213-7. . CrossrefGoogle Scholar
    • Nakayashiki A. 1994Commuting partial differential operators and vector bundles over Abelian varieties. Amer. J. Math. 116, 65–100.doi:10.2307/2374982. . CrossrefGoogle Scholar
    • Novikov S.P. 1974A periodic problem for the Korteweg-de Vries equation. I. Funktional. Anal. i Priložen. 8, 54–66. Google Scholar
    • Novikov S.P& Veselov A.P. 1986Two-dimensional Schrödinger operator: inverse scattering transform and evolutional equations. Solitons and coherent structures (Santa Barbara, Calif., 1985). Physica D. 18, 267–273.doi:10.1016/0167-2789(86)90187-9. . CrossrefGoogle Scholar
    • Osipov D.V. 2001The Krichever correspondence for algebraic varieties. Izv. Ross. Akad. Nauk Ser. Mat. 65, 91–128.[Transl. in Izv. Math. 65, 941–975.]. Google Scholar
    • Parshin A.N. 1999On a ring of formal pseudo-differential operators. Transl. Mat. Inst. Steklova. 224, 291–305. Google Scholar
    • Plaza-Martín, F. J. 2000 Generalized KP hierarchy for several variables, math.AG/0008004. Google Scholar
    • Pressley A& Segal G.B. 1986New York, NY:Oxford University Press. Google Scholar
    • Previato E. 1991Another algebraic proof of Weil's reciprocity. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, 9. Mat. Appl. 2, 167–171. Google Scholar
    • Ritt J.FDifferential algebra. American Mathematical Society Colloquium Publications vol. XXXIII1950New York, NY:American Mathematical Society. Google Scholar
    • Rothstein MConnections on the total Picard sheaf and the KP hierarchy. Acta Appl. Math. 42, 1996a297–308.doi:10.1007/BF01064170. . CrossrefGoogle Scholar
    • Rothstein MSheaves with connection on Abelian varieties. Duke Math. J. 84, 1996b565–598.doi:10.1215/S0012-7094-96-08418-5. . CrossrefGoogle Scholar
    • Rothstein, M. 2002 Dynamics of the Krichever construction in several variables, math.AG/0201066. Google Scholar
    • Sato M. 1989 The KP hierarchy and infinite-dimensional Grassmann manifolds. Theta functions in Bowdoin 1987, Brunswick, ME, 51-66. In Proc. Symp. Pure Math., no. 49, Part 1, 1989. Providence, RI: American Mathematical Society. Google Scholar
    • Sato M& Sato YSoliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear partial differential equations in applied science (Tokyo, 1982). Mathematical Studies no. 811983pp. 259–271. Eds. Amsterdam, The Netherlands:North-Holland. Google Scholar
    • Schur I. 1905Über vertauschbare lineare Differentialausdrücke. Sitzungsber. Berl. Math. Ges. 4, 2–8. Google Scholar
    • Singer M& Ulmer F. 1993Galois groups of second and third order linear differential equations. J. Symb. Comput. 16, 9–36.doi:10.1006/jsco.1993.1032. . CrossrefGoogle Scholar
    • Sturmfels B. 2002 Solving systems of polynomial equations. CBMS regional conference series in mathematics, vol. 97. Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, RI. Google Scholar
    • Taĭmanov I.A. 1997Secants of Abelian varieties, theta functions, and soliton equations. Uspekhi Mat. Nauk. 52, 149–224. Google Scholar
    • Treibich A. 1999Beyond the exceptional covers and their canonical hyperelliptic potentials. Publ. Mat. Urug. 8, 63–111. Google Scholar
    • Treibich A& Verdier J.-L. 1990Revêtements tangentiels et sommes de 4 nombres triangulaires. C.R. Acad. Sci. Paris Sér. I Math. 311, 51–54. Google Scholar
    • van der Put M& Ulmer F. 2000Differential equations and finite groups. J. Algebra. 226, 920–966.doi:10.1006/jabr.1999.8209. . CrossrefGoogle Scholar
    • Veselov A.P& Novikov S.PFinite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations. Dokl. Akad. Nauk SSSR. 279, 1984a20–24. Google Scholar
    • Veselov A.P& Novikov S.PFinite-gap two-dimensional Schrödinger operators. Potential operators. Dokl. Akad. Nauk SSSR. 279, 1984b784–788. Google Scholar
    • Veselov A.P, Styrkas K.L& Chalykh O.A. 1993Algebraic integrability for the Schrödinger equation, and groups generated by reflections. Teoret. Mat. Fiz. 94, 253–275.[Transl. Theoret. and Math. Phys.94, 182–197.]. Google Scholar
    • Veselov A.P, Feigin M.V& Chalykh O.A. 1996New integrable deformations of the quantum Calogero–Moser problem. Uspekhi Mat. Nauk. 51, 185–186.[Transl. Russian Math. Surveys51, 573–574.]. Google Scholar
    • Wallenberg G. 1902Sur les expressions différentielles linéaires homogènes commutatives. C.R. 134, 693–696. Google Scholar
    • Whittaker E. T. & Watson G. N. 1996 A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions. Reprint of the fourth (1927) edition. Cambridge Mathematical Library. Cambridge, UK: Cambridge University Press. Google Scholar
    • Wilson G. 1985 Algebraic curves and soliton equations. In Geometry today (Rome, 1984). Progr. Math., vol. 60, pp. 303–329. Boston, MA: Birkhäuser Boston. Google Scholar