Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Restricted access

An overview of geoengineering of climate using stratospheric sulphate aerosols

    We provide an overview of geoengineering by stratospheric sulphate aerosols. The state of understanding about this topic as of early 2008 is reviewed, summarizing the past 30 years of work in the area, highlighting some very recent studies using climate models, and discussing methods used to deliver sulphur species to the stratosphere. The studies reviewed here suggest that sulphate aerosols can counteract the globally averaged temperature increase associated with increasing greenhouse gases, and reduce changes to some other components of the Earth system. There are likely to be remaining regional climate changes after geoengineering, with some regions experiencing significant changes in temperature or precipitation. The aerosols also serve as surfaces for heterogeneous chemistry resulting in increased ozone depletion. The delivery of sulphur species to the stratosphere in a way that will produce particles of the right size is shown to be a complex and potentially very difficult task. Two simple delivery scenarios are explored, but similar exercises will be needed for other suggested delivery mechanisms. While the introduction of the geoengineering source of sulphate aerosol will perturb the sulphur cycle of the stratosphere signicantly, it is a small perturbation to the total (stratosphere and troposphere) sulphur cycle. The geoengineering source would thus be a small contributor to the total global source of ‘acid rain’ that could be compensated for through improved pollution control of anthropogenic tropospheric sources. Some areas of research remain unexplored. Although ozone may be depleted, with a consequent increase to solar ultraviolet-B (UVB) energy reaching the surface and a potential impact on health and biological populations, the aerosols will also scatter and attenuate this part of the energy spectrum, and this may compensate the UVB enhancement associated with ozone depletion. The aerosol will also change the ratio of diffuse to direct energy reaching the surface, and this may influence ecosystems. The impact of geoengineering on these components of the Earth system has not yet been studied. Representations for the formation, evolution and removal of aerosol and distribution of particle size are still very crude, and more work will be needed to gain confidence in our understanding of the deliberate production of this class of aerosols and their role in the climate system.

    References

    • Ambach W& Blumthaler M. 1993Biological effectiveness of solar UV in humans. Cell. Mol. Life Sci. 49, 747–753. Crossref, ISIGoogle Scholar
    • Annamalai H, Hamilton K& Sperber K.R. 2007South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate. 20, 1071–1092.doi:10.1175/JCLI4035.1. . Crossref, ISIGoogle Scholar
    • Arnold F, Kiendler A, Wiedemer V, Aberle S, Stilp T& Busen R. 2000Chemiion concentration measurements in jet engine exhaust at the ground: implications for ion chemistry and aerosol formation in the wake of a jet aircraft. Geophys. Res. Lett. 27, 1723–1726.doi:10.1029/1999GL011096. . Crossref, ISIGoogle Scholar
    • Bauman J.J, Russell P.B, Geller M.A& Hamill P. 2003A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparisons, 1984–1999. J. Geophys. Res. 108, 4383doi:10.1029/2002JD002993. . Crossref, ISIGoogle Scholar
    • Bengtsson L. 2006Geo-engineering to confine climate change: is it at all feasible?. Clim. Change. 77, 229–234.doi:10.1007/s10584-006-9133-3. . Crossref, ISIGoogle Scholar
    • Blaustein A.R, Hoffman P.D, Hokit D.G, Kiesecker J.M, Walls S.C& Hays J.B. 1994UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines?. Proc. Natl Acad. Sci. USA. 91, 1791–1795.doi:10.1073/pnas.91.5.1791. . Crossref, PubMed, ISIGoogle Scholar
    • Brown R.C, Miake-Lye R.C, Anderson M.R, Kolb C.E& Resch T.J. 1996Aerosol dynamics in near-field aircraft plumes. J. Geophys. Res. 101, 22 939–22 953.doi:10.1029/96JD01918. . Crossref, ISIGoogle Scholar
    • Budyko, M. I. 1974 Izmeniya Klimata. Gidrometeoizdat, also published as: Budyko, M. I. 1977 Climatic changes (transl. Izmeniia Klimata Leningrad: Gidrometeoizdat, 1974). Washington, DC: American Geophysical Union. Google Scholar
    • Cicerone R.J. 2006Geoengineering: encouraging research and overseeing implementation. Clim. Change. 77, 221–226.doi:10.1007/s10584-006-9102-x. . Crossref, ISIGoogle Scholar
    • Collins, W. D. et al. 2004 Description of the NCAR community atmosphere model: CAM3.0. Technical report NCAR/TN-464+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, pp. 226. See http://www.ccsm.ucar.edu/models/atm-cam. Google Scholar
    • Collins W.D, et al.2006The formulation and atmospheric simulation of the community atmosphere model: CAM3. J. Climate. 19, 2144–2161.doi:10.1175/JCLI3760.1. . Crossref, ISIGoogle Scholar
    • Crutzen P.J. 2006Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?. Clim. Change. 77, 211–220.doi:10.1007/s10584-006-9101-y. . Crossref, ISIGoogle Scholar
    • Dürbeck T& Gerz T. 1996Dispersion of aircraft exhaust in the free troposphere. J. Geophys. Res. 101, 26 007–26 015. Crossref, ISIGoogle Scholar
    • Fahey D.W, et al.1995Emission measurements of the Concorde supersonic aircraft in the lower stratosphere. Science. 270, 70–74.doi:10.1126/science.270.5233.70. . Crossref, ISIGoogle Scholar
    • Fleming, J. R. 1990 Meteorology in America, 1800–1870, pp. 24–31. Baltimore, MD: Johns Hopkins University Press. Google Scholar
    • Govindasamy B.G& Caldeira K. 2000Geoengineering Earth's radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett. 27, 2141–2144.doi:10.1029/1999GL006086. . Crossref, ISIGoogle Scholar
    • Govindasamy B.G& Caldeira K. 2003Geoengineering Earth's radiation balance to mitigate climate change from a quadrupling of CO2. Glob. Planet. Change. 37, 157–168.doi:10.1016/S0921-8181(02)00195-9. . Crossref, ISIGoogle Scholar
    • Govindasamy B.G, Thompson S, Duffy P, Caldeira K& Delire C. 2002Impact of geoengineering schemes on the terrestrial biosphere. Geophys. Res. Lett. 29, 2061doi:10.1029/2002GL015911. . Crossref, ISIGoogle Scholar
    • Gu L, Baldocchi D.D, Wofsy S.C, Munger J.W, Michalsky J.J, Urbanski S.P& Boden T.A. 2003Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science. 299, 2035–2038.doi:10.1126/science.1078366. . Crossref, PubMed, ISIGoogle Scholar
    • Hoffert M.I, et al.1998Energy implications of future stabilization of atmospheric CO2 content. Nature. 395, 881–884.doi:10.1038/27638. . Crossref, ISIGoogle Scholar
    • IPCCSummary for policymakers. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate ChangeSolomon S, Qin D, Manning M, Chen Z, Marquis M, Avery K, Tignor M& Miller H. 2007app. 1–18. Eds. Cambridge, UK:Cambridge University Press. CrossrefGoogle Scholar
    • IPCC 2007b Climate models and their evaluation. In Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (eds D. A. Randall et al.), pp. 589–662. Cambridge, UK: Cambridge University Press. Google Scholar
    • IPCC 2007c Global climate projections In Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (eds G. A. Meehl et al.), ch. 10, pp. 749–845. Cambridge, UK: Cambridge University Press. Google Scholar
    • Justus C.G& Mani K.K. 1979A model for the simulation of turbulent and eddy diffusion processes at heights of 0–65 km. PAGEOPH. 117, 513–530. CrossrefGoogle Scholar
    • Kärcher B, Turco R, Yu F, Danilin M, Weisenstein D, Miake-Lye R& Busen R. 2000A unified model for ultrafine aircraft particle emissions. J. Geophys. Res. 105, 29 379–29 386.doi:10.1029/2000JD900531. . Crossref, ISIGoogle Scholar
    • Keith D.W. 2000Geoengineering the climate: history and prospect. Annu. Rev. Energy Environ. 25, 245–284.doi:10.1146/annurev.energy.25.1.245. . Crossref, ISIGoogle Scholar
    • Kiehl J.T. 2006Geoengineering climate change: treating the symptom over the cause?. Clim. Change. 77, 227–228.doi:10.1007/s10584-006-9132-4. . Crossref, ISIGoogle Scholar
    • Kinnison D.E, et al.2007Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res. 112, D20302doi:10.1029/2006JD007879. . Crossref, ISIGoogle Scholar
    • Lawrence M.J. 2006The geoengineering dilemma: to speak or not to speak. Clim. Change. 77, 245–248.doi:10.1007/s10584-006-9131-5. . Crossref, ISIGoogle Scholar
    • MacCracken M.C. 2006Geoengineering: worthy of cautious evaluation?. Clim. Change. 77, 235–243.doi:10.1007/s10584-006-9130-6. . Crossref, ISIGoogle Scholar
    • Madronich S& de Gruijl F.R. 1993Skin cancer and UV radiation. Nature. 366, 23doi:10.1038/366023a0. . Crossref, PubMed, ISIGoogle Scholar
    • Matthews H.D& Caldeira K. 2007Transient climate-carbon simulations of planetary geoengineering. Proc. Natl Acad. Sci. USA. 104, 9949–9954.doi:10.1073/pnas.0700419104. . Crossref, PubMed, ISIGoogle Scholar
    • Montzka S.A, Calvert P, Hall B.D, Elkins J.W, Conway T.J, Tans P.P& Sweeny C. 2007On the global distribution, seasonality, budget of atmospheric corbonyl sulfide (COS) and some similarities to CO2. J. Geophys. Res. 112, D09302doi:10.1029/2006JD007665. . Crossref, ISIGoogle Scholar
    • NAS92Panel on Policy Implications of Greenhouse Warming, Committee on Science, Engineering and Public Policy: policy implications of greenhouse warming: mitigation, adaptation and the science base. 1992Washington, DC:National Academy Press. Google Scholar
    • NASA-AEAP 1997 In The atmospheric effects of subsonic aircraft: interim assessment report of the advanced subsonic technology program (ed. R. R. Friedl), pp. 168. Wahington, DC: NASA Reference Publication 1400. Google Scholar
    • Newman P.A, Nash E.R, Kawa S.R, Montzka S.A& Schauffler S.M. 2006When will the Antarctic ozone hole recover?. Geophys. Res. Lett. 33, L12814doi:10.1029/2005GL025232. . Crossref, ISIGoogle Scholar
    • Oman L, Robock A, Stenchikov G.L, Schmidt G.A& Ruedy R. 2005Climatic response to high latitude volcanic eruptions. J. Geophys. Res. 110, D13103doi:10.1029/2004D005487. . Crossref, ISIGoogle Scholar
    • Oman L, Robock A, Stenchikov G.L& Thordarson THigh latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys. Res. Lett. 33, 2006aL13711doi:10.1029/2006GL027665. . Crossref, ISIGoogle Scholar
    • Oman L, Robock A, Stenchikov G.L, Thordarson T, Koch D, Shindell D& Gao CModelling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruptions. J. Geophys. Res. 111, 2006bD12209doi:10.1029/2005JD0006899. . Crossref, ISIGoogle Scholar
    • Pinto J.R, Turco R& Toon O. 1998Self-limiting physical and chemical effects in volcanic eruption clouds. J. Geophys. Res. 94, 11 165–11 174.doi:10.1029/JD094iD08p11165. . Crossref, ISIGoogle Scholar
    • Rasch P.J, Barth M, Kiehl J.T, Benkovitz C.M& Schwartz S.E. 2000A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res. 105, 1367–1385.doi:10.1029/1999JD900777. . Crossref, ISIGoogle Scholar
    • Rasch P.J, Crutzen P.J& Coleman D.B. 2008Exploring the geoengineering of climate using stratospheric sulfate aerosols: the role of particle size. Geophys. Res. Lett. 35, L02809doi:10.1029/2007GL032179. . Crossref, ISIGoogle Scholar
    • Robock A. 2000Volcanic eruptions and climate. Rev. Geophys. 38, 191–219.doi:10.1029/1998RG000054. . Crossref, ISIGoogle Scholar
    • Robock A. 2008Twenty reasons why geoengineering might be a bad idea. Bull. Atom. Sci. 64, 14–18.doi:10.2968/064002006. . CrossrefGoogle Scholar
    • Robock A, Oman L& Stenchikov G.L. 2008Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res. 113, D16101doi:10.1029/2008JD010050. . Crossref, ISIGoogle Scholar
    • Schmidt G.A, et al.2006Present day atmospheric simulations using GISS ModelE: comparisons to in-situ, satellite and reanalysis data. J. Clim. 19, 153–193.doi:10.1175/JCLI3612.1. . Crossref, ISIGoogle Scholar
    • Schumann U, Schlager H, Arnold F, Bauman R, Haschberger P& Klemm O. 1998Dilution of aircraft exhaust plumes at cruise altitudes. Atmos. Environ. 32, 3097–3103.doi:10.1016/S1352-2310(97)00455-X. . Crossref, ISIGoogle Scholar
    • Seinfeld J.H& Pandis S.NAtmospheric chemistry and physics. 1997New York, NY:Wiley. Google Scholar
    • Solomon S. 1999Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275–316.doi:10.1029/1999RG900008. . Crossref, ISIGoogle Scholar
    • SPARC 2006 Assessment of stratospheric aerosol properties (ASAP). Technical report WCRP-124/WMO/TD-No. 1295/SPARC report no. 4, SPARC, Toronto, Ontario, CA, pp. 322. Google Scholar
    • Steele H.M& Turco R.P. 1997Seperation of aerosol and gas component in halogen occultation experiments and the stratospheric aerosol and gas experiment SAGE II extinction measurements: implications of SAGE II ozone concentrations and trends. J. Geophys. Res. 102, 19 665–19 681.doi:10.1029/97JD01263. . Crossref, ISIGoogle Scholar
    • Stenchikov G.L, Kirchner I, Robock A, Graf H.F, Antuna J.C, Grainger R.G, Lambert A& Thomason L. 1998Radiative forcing from the 1991 Mount Pinatubo volcanic eruption conditions. J. Geophys. Res. 103, 13 837–13 857.doi:10.1029/98JD00693. . Crossref, ISIGoogle Scholar
    • Stenchikov G.A, Robock A, Ramaswamy V, Schwarzkopf M.D, Hamilton K& Ramachandran S. 2002Arctic oscillation response to the 1991 Mount Pinatubo eruption: effect of volcanic aerosols and ozone depletion. J. Geophys. Res. 107, 4803doi:10.1029/2002JD002090. . Crossref, ISIGoogle Scholar
    • Stenchikov G, Hamilton K, Stouffer R.J, Robock A, Ramaswamy V, Santer B& Graf H.-F. 2006Arctic oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res. 111, D07107doi:10.1029/2005JD0068286. . Crossref, ISIGoogle Scholar
    • Tilmes S, Müller R, Engel A, Rex M& Russell J.M. 2006Chemical ozone loss in the Arctic and Antarctic stratosphere between 1992 and 2005. Geophys. Res. Lett. 33, LK20812doi:10.1029/2006GL026925. . Crossref, ISIGoogle Scholar
    • Tilmes S, Müller R, Salawitch R.J, Schmidt U, Webster C.R, Oelhaf H, Russell J.M& Camy-Peyret C.C. 2007Chemical ozone loss in the Arctic winter 1991–1992. Atmos. Chem. Phys. 7, 10 097–10 129. CrossrefGoogle Scholar
    • Tilmes S, Müller R& Salawitch R. 2008The sensitivity of polar ozone depletion to proposed geo-engineering schemes. Science. 320, 1201–1204.doi:10.1126/science.1153966. . Crossref, PubMed, ISIGoogle Scholar
    • Tilmes, S., Garcia, R. R., Kinnison, E. D., Gettelman, A. & Rasch, P. J. Submitted. Impact of geo-engineered aerosols on troposphere and stratosphere using the whole atmosphere climate model WACCM3. Google Scholar
    • Trenberth K.E& Dai A. 2007Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett. 34, L15702doi:10.1029/2007GL030524. . Crossref, ISIGoogle Scholar
    • Turco, R. P. 1995 Global environmental engineering: prospects and pitfalls, ch. 7, pp. 93–113. Sudbury, MA: Jones and Bartlett. Google Scholar
    • Turco R& Yu F. 1997Aerosol invariance in expanding coagulating plumes. Geophys. Res. Lett. 24, 1223–1226.doi:10.1029/97GL01092. . Crossref, ISIGoogle Scholar
    • Turco R& Yu F. 1998Aerosol size distribution in a coagulating plume: analytical behavior and modeling applications. Geophys. Res. Lett. 25, 927–930.doi:10.1029/98GL00324. . Crossref, ISIGoogle Scholar
    • Turco R& Yu F. 1999Particle size distributions in an expanding plume undergoing simultaneous coagulation and condensation. J. Geophys. Res. 104, 19 227–19 241.doi:10.1029/1999JD900321. . Crossref, ISIGoogle Scholar
    • Turco, R. P., Hamill, P., Toon, O. B., Whitten R. C. & Kiang, C. S. 1979 The NASA Ames Research Center stratospheric aerosol model. I. Physical processes and numerical analogs. NASA Technical Report No. 1362. Google Scholar
    • Turco R.P, Whitten R.C, Toon O.B, Pollack J.B& Hamill P. 1980OCS, stratospheric aerosols and climate. Nature. 283, 283–285.doi:10.1038/283283a0. . Crossref, ISIGoogle Scholar
    • Vogelmann A.M, Ackerman T.P& Turco R.P. 1992Enhancements in biologically effective ultraviolet radiation following volcanic eruptions. Nature. 359, 47–49.doi:10.1038/359047a0. . Crossref, PubMed, ISIGoogle Scholar
    • Wetzel M.A, Shaw G.E, Slusser J.R, Borys R.D& Cahill C.F. 2003Physical, chemical, and ultraviolet radiative characteristics of aerosol in central Alaska. J. Geophys. Res. 108, 4418doi:10.1029/2002JD00320. . Crossref, ISIGoogle Scholar
    • Wigley T.M.L. 2006A combined mitigation/geoengineering approach to climate stabilization. Science. 314, 452–454.doi:10.1126/science.1131728. . Crossref, PubMed, ISIGoogle Scholar
    • WRMSR 2007 Workshop report on managing solar radiation (eds L. Lane, K. Caldeira, R. Chatfield & S. Langhoff). NASA, NASA/CP-2007-214558, pp. 31. Google Scholar
    • Yu F& Turco R. 1997The role of ions in the formation and evolution of particles in aircraft plumes. Geophys. Res. Lett. 24, 1927–1930.doi:10.1029/97GL01822. . Crossref, ISIGoogle Scholar
    • Yu F& Turco RContrail formation and impacts on aerosol properties in aircraft plumes: effects of fuel sulfur content. Geophys. Res. Lett. 25, 1998a313–316.doi:10.1029/97GL03695. . Crossref, ISIGoogle Scholar
    • Yu F& Turco RThe formation and evolution of aerosols in stratospheric aircraft plumes: numerical simulations and comparisons with observations. J. Geophys. Res. 103, 1998b25 915–25 934.doi:10.1029/98JD02453. . Crossref, ISIGoogle Scholar
    • Yu F& Turco R.P. 1999Evolution of aircraft-generated volatile particles in the far wake regime: potential contributions to ambient CCN/IN. Geophys. Res. Lett. 26, 1703–1706.doi:10.1029/1999GL900324. . Crossref, ISIGoogle Scholar
    • Yu F& Turco R.P. 2001From molecular clusters to nanoparticles: the role of ambient ionization in tropospheric aerosol formation. J. Geophys. Res. 106, 4797–4814.doi:10.1029/2000JD900539. . Crossref, ISIGoogle Scholar