Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Restricted accessArticles

Tribological design constraints of marine renewable energy systems

Robert J. K. Wood

Robert J. K. Wood

National Centre for Advanced Tribology at Southampton (nCATS), School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK

[email protected]

Google Scholar

Find this author on PubMed

,
AbuBakr S. Bahaj

AbuBakr S. Bahaj

Sustainable Energy Research Group, School of Civil Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Google Scholar

Find this author on PubMed

,
Stephen R. Turnock

Stephen R. Turnock

Fluid Structure Interactions Research Group, Froude Building, School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Google Scholar

Find this author on PubMed

,
Ling Wang

Ling Wang

National Centre for Advanced Tribology at Southampton (nCATS), School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Google Scholar

Find this author on PubMed

and
Martin Evans

Martin Evans

National Centre for Advanced Tribology at Southampton (nCATS), School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Google Scholar

Find this author on PubMed

    Against the backdrop of increasing energy demands, the threat of climate change and dwindling fuel reserves, finding reliable, diverse, sustainable/renewable, affordable energy resources has become a priority for many countries. Marine energy conversion systems are at the forefront of providing such a resource. Most marine renewable energy conversion systems require tribological components to convert wind or tidal streams to rotational motion for generating electricity while wave machines typically use oscillating hinge or piston within cylinder geometries to promote reciprocating linear motion. This paper looks at the tribology of three green marine energy systems, offshore wind, tidal and wave machines. Areas covered include lubrication and contamination, bearing and gearbox issues, biofouling, cavitation erosion, tribocorrosion, condition monitoring as well as design trends and loading conditions associated with tribological components. Current research thrusts are highlighted along with areas needing research as well as addressing present-day issues related to the tribology of offshore energy conversion technologies.

    References

    • Agamloh E. B., Wallace A. K.& von Jouanne A.. 2008 A novel direct-drive ocean wave energy extraction concept with contact-less force transmission system. Renew. Energ 33, 520-529 (doi:10.1016/j.renene.2007.01.008). Crossref, Web of ScienceGoogle Scholar
    • ANSI/AGMA/AWEA. 2003 Design and specification of gearboxes for wind turbines Washington, DC American National Standards Institute/American Gear Manufacturers Association/American Wind Energy Association. Google Scholar
    • Apolinario M.& Coutinho R.. 2009 Understanding the biofouling of offshore and deep-sea structures. Advances in marine antifouling coatings and technologies , Hellio C.& Yebra D. 132 Cambridge, UK Woodhead Publishing. CrossrefGoogle Scholar
    • Bahaj A. S.& Myers L. E.. 2003 Fundamentals applicable to the utilisation of marine current turbines for energy production. Renew. Energ 28, 2205-2211 (doi:10.1016/S0960-1481(03)00103-4). Crossref, Web of ScienceGoogle Scholar
    • Bahaj A. S.& Myers L. E.. 2004 Analytical estimates of the energy yield potential from the Alderney race (channel islands) using marine current energy converters. Renew. Energ. 29, 1931-1945 (doi:10.1016/j.renene.2004.02.013). Crossref, Web of ScienceGoogle Scholar
    • Bahaj A. S., Chaplin J. R., Molland A. F.& Batten W. M. J.. 2005 Experimental investigation into the hydrodynamic performance of marine current turbines. Sustainable Energy Series. Report no. 3, Southampton University. Google Scholar
    • Bahaj A. S., Molland A. F., Chaplin J. R.& Batten W. M. J.. 2007 a Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energ. 32, 407-426 (doi:10.1016/j.renene.2006.01.012). Crossref, Web of ScienceGoogle Scholar
    • Bahaj A. S., Batten W. M. J.& McCann G.. 2007 b Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renew. Energ. 32, 2479-2490 (doi:10.1016/j.renene.2007.10.001). Crossref, Web of ScienceGoogle Scholar
    • Bahaj A. S., Blunden L. S.& Anwar A. A.. 2008 Formulation of the tidal-current energy device development and evaluation protocol. Sustainable Energy Series. Report no. 5. Google Scholar
    • Baltazar J.& Falçao de Campos J. A. C.. 2008 Hydrodynamic analysis of a horizontal axis marine current turbine with a boundary element methods. In Proc. 27th Int. Conf. Offshore Mechanics Arctic Engineering (OMAE 2008), Estoril, Portugal, 15–20 June 2008. Google Scholar
    • Bartz W. J.. 2005 Tribological aspects of wind power plants. In Proc. World Tribology Congress III, Washington, DC, 12–16 September 2005. Google Scholar
    • Batten W. M. J., Bahaj A. S., Molland A. F.& Chaplin J. R.. 2007 Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Eng. 34, 1013-1020 (doi:10.1016/j.oceaneng.2006.04.008). Crossref, Web of ScienceGoogle Scholar
    • Batten W. M. J., Bahaj A. S., Molland A. F.& Chaplin J. R.. 2008 The prediction of the hydrodynamic performance of marine current turbines. Renew. Energ 33, 1085-1096 (doi:10.1016/j.renene.2007.05.043). Crossref, Web of ScienceGoogle Scholar
    • Berchiche N., Gvekula M.& Bark G.. 2003 Concept of focusing of collapse energy—application to cavitation observations. Osaka, Japan CAV. Google Scholar
    • Blunden L. S.& Bahaj A. S.. 2007 Tidal energy resource assessment for tidal stream generators. Proc. IMech. Eng. A J. Power Energ. 221, 130–146. Google Scholar
    • Blunden L. S.& Bahaj A. S.. 2008 Flow through large arrays of tidal energy converters:is there an analogy with depth limited flow through vegetation? Proc. World Renewable Energy Congress (WREC X), Glasgow, UK, 19–25 July 2008 1091–1096. Google Scholar
    • Blunden L. S., Batten W. M. J.& Bahaj A. S.. 2008 Comparing energy yields from fixed and yawing horizontal axis marine current turbines in the English channel. Proc. 27th Int. Conf. Offshore Mechanics and Arctic Engineering (OMAE 2008), Estoril, Portugal, 15–20 June 2008. Google Scholar
    • Burton T., Sharpe D., Jenkins N.& Bossanyi E.. 2001 Wind energy handbook New York, NY Wiley. CrossrefGoogle Scholar
    • Carlton J. S.. 2007 Marine propellers and propulsion 2nd edn. Oxford, UK Butterworth-Heinemann. Google Scholar
    • Chaplin J. R., Farley F. J. M., Prentice M. E., Rainey R. C. T.& Rimmer S. J.. 2007 Development of the Anaconda all-rubber WEC. Proc. 7th European Wave Tidal Energy Conf., Porto, Portugal, 11–13 September, 2007. Google Scholar
    • Christensen J. J.& Andersson C.. 2009 Remote condition monitoring of Vestas turbines. Proc. EWEC 2009. Technical Track—Operation and Maintenance, Marseille, France, 16–19 March 2009. Google Scholar
    • Ciang C. C., Lee J.-R.& Bang H.-J.. 2008 Structural health monitoring for a wind turbine system:a review of damage detection methods. Meas. Sci. Technol 19, 1-20 (doi:10.1088/0957-0233/19/12/122001). Crossref, Web of ScienceGoogle Scholar
    • Clarke J., Connor G., Grant A., Johnstone C.& Ordonez-Sanchez S.. 2008 Contra-rotating marine current turbines:performance in field trials and power train developments. Proc. World Renewable Energy Congress (WREC X), Glasgow, UK, 19–25 July 2008. Google Scholar
    • DTI. 2007 Economic viability of a simple tidal stream energy device. Contract no. TP/3/ERG/6/1/15527/REP. London, UK:Department of Trade and Industry. Google Scholar
    • Errichello R.& Muller J.. 2002 Oil cleanliness in wind turbine gearboxes. Machinery Lubrication . See http://www.machinerylubrication.com/Read/369/wind-turbine-gearboxes-oil. Google Scholar
    • Falnes J.. 2007 A review of wave-energy extraction. Mar. Struct. 20, 185-201 (doi:10.1016/j.marstruc.2007.09.001). Crossref, Web of ScienceGoogle Scholar
    • Fitch J.. 2008 How water causes bearing failure. Machinery Lubrication . See http://www.machinerylubrication.com/Read/1367/water-bearing-failure. Google Scholar
    • Fraenkel P. L.. 2002 Power from marine turbines. Proc. Inst. Mech. Eng. A 216, 1–14 (doi:10.1243/095765002760024782). Google Scholar
    • Friesch J.. 2003 Erosion problems on fast high powered ships. FAST 2003, Naples, Italy, 7–10 October 2003. Google Scholar
    • Friesch J.. 2004 EROCAV-A. Three year EU project successfully completed. HSVA, News Wave January. Google Scholar
    • Friesch J., Kuiper G., Briancon L., Lee D.& Wilczynski L.. 2004 Correlation between full scale and model scale results on propeller and rudder erosion. Proc. Cavitation Erosion Workshop, Bassin d’Essais des Carenes, France, 27–28 May 2004. Google Scholar
    • Garrett C.& Cummins P.. 2007 The efficiency of a turbine in a tidal channel. J. Fluid Mech. 588, 243-251. Crossref, Web of ScienceGoogle Scholar
    • Hameed Z.. 2009 Condition monitoring and fault detection of wind turbines and related algorithms:a review. Renew. Sustain. Energ. Rev 13, 1-39 (doi:10.1016/j.rser.2007.05.008). Crossref, Web of ScienceGoogle Scholar
    • Hameed Z.. 2010 Practical aspects of a condition monitoring system for a wind turbine with emphasis on its design, system architecture, testing and installation. Renew. Energ 35, 879-894 (doi:10.1016/j.renene.2009.10.031). Crossref, Web of ScienceGoogle Scholar
    • Harvey T. J., Wharton J. A.& Wood R. J. K.. 2007 Development of synergy model for erosion-corrosion of carbon steel in a slurry pot. Tribol. Mater. Surf. Interfaces 1, 33-47 (doi:10.1179/175158407X181471). CrossrefGoogle Scholar
    • ISO. 2005 ISO 81400-4:2005. Wind turbines. Part 4. Design and specifications of gearboxes Geneva, Switzerland:Organization for Standardization. Google Scholar
    • ISO. 2007 ISO 281:2007. Rolling bearings:dynamic load ratings and rating life Geneva, Switzerland:International Organization for Standardization. Google Scholar
    • ITTC. 2005 Report of specialist committee on cavitation erosion on propellers and appendages on high powered/high speed ships. Proc. 24th Int. Towing Tank Conf. and Edinburgh, UK, 4–10 September 2005vol. 2, 509–542. Google Scholar
    • Karimi A.& Avellan F.. 1986 Comparisons of erosion mechanisms in different types of cavitation. Wear 113, 305-322. Crossref, Web of ScienceGoogle Scholar
    • Kotzalas M. N., Needelman W. M., Lucas D. R.& LaVallee G. L.. 2008 Improving wind turbine gearbox life by minimizing oil contamination and using debris resistant bearings. Proc. AWEA Wind Power Conf. and Houston, TX, 1–4 June 2008. Google Scholar
    • Leijon M., et al. 2006 An electrical approach to wave energy conversion. Renew. Energ. 31, 1309-1319 (doi:10.1016/j.renene.2005.07.009). Crossref, Web of ScienceGoogle Scholar
    • Lekou D. J.& Mouzakis F.. 2009 Fused acoustic emission and vibration techniques for health monitoring of wind turbine gearbox and bearings. Proc. EWEC Scientific Track—Operation and Maintenance, Marseille, France, 16–19 March 2009. Google Scholar
    • Leybourne M. T., Batten W. M. J., Bahaj A. S., O’Nians J.& Minns N.. 2009 A parametric experimental study of the 2D performance of a ducted wave energy converter. Proc. 8th European Wave and Tidal Energy Conf. and Uppsala, Sweden, 7–10 September 2009 264–269. Google Scholar
    • Lu B., Li Y., Wu X.& Yang Z.. 2009 A review of recent advances in wind turbine condition monitoring and fault diagnosis. Proc. IEEE Conf. on Power Electronics and Machines in Wind Applications. Lincoln, NE, 24–26 June 2009. Google Scholar
    • Mackay E. B. L., Bahaj A. S.& Challenor P.. 2010 a Uncertainty in wave energy resource assessment. Part 1. Historic data. Renew. Energ. 35, 1792-1808 (doi:10.1016/j.renene.2009.10.026). Crossref, Web of ScienceGoogle Scholar
    • Mackay E. B. L., Bahaj A. S.& Challenor P.. 2010 b Uncertainty in wave energy resource assessment. Part 2. Variability and predictability. Renew. Energ. 35, 1809-1819 (doi:10.1016/j.renene.2009.10.027). Crossref, Web of ScienceGoogle Scholar
    • Mason-Jones A., O’Doherty T., O’Doherty D. M., Evans P. S.& Wooldridge C. F.. 2008 Characterisation of a HATT using CFD and ADCP site data. Proc. World Renewable Energy Congress (WREC X), Glasgow, UK, 19–25 July 2008. Google Scholar
    • McNiff B., Musial W. D.& Errichello R.. 1990 Variations in gear fatigue life for different wind turbine braking strategies Golden, CO Solar Energy Research Institute. Google Scholar
    • Molland A. F., Bahaj A. S., Chaplin J. R.& Batten W. M. J.. 2004 Measurements and predictions of forces, pressures and cavitation on 2-D sections suitable for marine current turbine. Proc. Inst. Mech. Engr. J. Eng. Marit. Environ. Part M 218, 127–138. Google Scholar
    • Mørch K. A.. 1981 Cavity cluster dynamics and cavitation erosion. Proc. ASME Cavitation and Polyphase Flow Forum, Boulder, CO, 22–24 June 1981. Google Scholar
    • Musial W., Butterfield S.& McNiff B.. 2007 Improving wind turbine gearbox reliability. Proc. EWEA (European Wind Energy Association), (2007) European wind energy conference energy conference, Milan, Italy, 7–10 May 2007 Springfield, VA US Department of Commerce, National Technical Information Service. Google Scholar
    • Myers L. E.& Bahaj A. S.. 2005 Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney race. Renew. Energ. 30, 1713-1731 (doi:10.1016/j.renene.2005.02.008). Crossref, Web of ScienceGoogle Scholar
    • Myers L. E.& Bahaj A. S.. 2006 Power output performance characteristics of a horizontal axis marine current turbine. Renew. Energ 31, 197-208 (doi:10.1016/j.renene.2005.08.022). Crossref, Web of ScienceGoogle Scholar
    • Myers L. E.& Bahaj A. S.. 2008 Scale reproduction of the flow field for tidal energy converters. Proc. World Renewable Energy Congress (WREC X), Glasgow, UK, 19–25 July 2008. Google Scholar
    • Myers L. E.& Bahaj A. S.. 2009 Near wake properties of horizontal axis marine current turbines. Proc. 8th European Wave and Tidal Energy Conf. and Uppsala, Sweden, 7–10 September 2009 558–565. Google Scholar
    • Myers L. E., Bahaj A. S., Germain G.& Giles J.. 2008 Flow boundary interaction effects for marine current energy conversion devices. Proc. World Renewable Energy Congress (WREC X), Glasgow, UK, 19–25 July 2008 711–716. Google Scholar
    • Nicholls-Lee R.& Turnock S. R.. 2007 Enhancing performance of a horizontal axis tidal turbine using adaptive blades. OCEANS 2007—Europe 1–6 Piscataway, NJ Institute of Electrical and Electronics Engineers. Google Scholar
    • Nicholls-Lee R. F& Turnock S. R.. 2008 Tidal energy extraction:renewable, sustainable and predictable. Sci. Prog. 91, 81-111 (doi:10.3184/003685008X285582). Crossref, PubMedGoogle Scholar
    • Nicholls-Lee R. F., Boyd S. W.& Turnock S. R.. 2009 Development of high performance composite bend-twist coupled blades for a horizontal axis tidal turbine. 17th Int. Conf. Composite Materials, Edinburgh, UK, 27–31 July 2009 10 London, UK Institute of Materials, Minerals and Mining. Google Scholar
    • Nielsen F. G., et al. 2009 [Report of] Specialist Committee V.4:ocean, wind and wave energy utilization. Proc. 17th Int. Ship and Offshore Structures Congress 2009 Seoul, Korea Seoul National University Seoul, KoreaAugustpp. 201–257. Google Scholar
    • Platts M. J.. 2006 Wind energy turns to bamboo. Energ. Mater. 1, 84-87 (doi:10.1179/174892406X144479). CrossrefGoogle Scholar
    • Plesset M. S.& Chapman R. B.. 1970 Collapse of initially spherical vapour cavity in the neighbourhood of solid boundary. J. Fluid Mech 47, 283-290 (doi:10.1017/S0022112071001058). Crossref, Web of ScienceGoogle Scholar
    • Rasmussen F., Thomsen K.& Larsen T. J.. 2004 The gearbox problem revised. Riso Fact Sheet AED-RB-17(en). Roskilde, Denmark:Riso National Laboratory. See http://www.windwin.de/images/pdf/riso.pdf. Google Scholar
    • Tavner P. J., Xiang J.& Spinato F.. 2007 Reliability analysis for wind turbines. Wind Energ. 10, 1-18 (doi:10.1002/we.204). Crossref, Web of ScienceGoogle Scholar
    • Terrell E. J., Needelman W. M.& Kyle J. P.. 2009 Tribological challenges to the system. Proc. ASME/STLE (American Society of Mechanical Engineers/Society of Tribologists and Lubrication Engineers) Int. Joint Tribology Conf, Memphis, TN, 19–21 October 2009 New York, NY ASME/STLE. Google Scholar
    • Thakker A.& Abdulhadi R.. 2008 The performance of wells turbine under bi-directional airflow. Renew. Energ. 33, 2467-2474 (doi:10.1016/j.renene.2008.02.013). Crossref, Web of ScienceGoogle Scholar
    • Torresi M., Camporeale S. M., Strippoli P. D.& Pascazio G.. 2008 Accurate numerical simulation of a high solidity Wells turbine. Renew. Energ. 33, 735-747 (doi:10.1016/j.renene.2007.04.006). Crossref, Web of ScienceGoogle Scholar
    • Valério D., Beirão P.& Sá da Costa J.. 2007 Optimisation of wave energy extraction with the Archimedes wave swing. Ocean Eng. 34, 2330-2344 (doi:10.1016/j.oceaneng.2007.05.009). Crossref, Web of ScienceGoogle Scholar
    • Walford C. A.. 2006 Wind turbine reliability:understanding and minimizing wind turbine operation and maintenance costs. Albuquerque, NM Sandia National Laboratories Sandia report no. and SAND 2006-1100. Google Scholar
    • Yagi S.. 2004 Bearings for wind turbine. NTN Technical Review no. 71, pp. 40–47. See http://www.ntn.co.jp/english/products/review/pdf/NTN_TR71_en_P040.pdf. Google Scholar
    • Yang W.& Tavner P. J.. 2010 Cost-effective condition monitoring for wind turbines. IEEE Trans. Ind. Electron. 57, 263-271 (doi:10.1109/TIE.2009.2032202). Crossref, Web of ScienceGoogle Scholar