Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Restricted accessResearch article

Development and recent evaluation of the MT_CKD model of continuum absorption

,
Vivienne H. Payne

Vivienne H. Payne

Atmospheric and Environmental Research, Lexington, MA, USA

Google Scholar

Find this author on PubMed

,
Jean-Luc Moncet

Jean-Luc Moncet

Atmospheric and Environmental Research, Lexington, MA, USA

Google Scholar

Find this author on PubMed

,
Jennifer S. Delamere

Jennifer S. Delamere

Atmospheric and Environmental Research, Lexington, MA, USA

Google Scholar

Find this author on PubMed

,
Matthew J. Alvarado

Matthew J. Alvarado

Atmospheric and Environmental Research, Lexington, MA, USA

Google Scholar

Find this author on PubMed

and
David C. Tobin

David C. Tobin

Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, Madison, WI, USA

Google Scholar

Find this author on PubMed

    Water vapour continuum absorption is an important contributor to the Earth's radiative cooling and energy balance. Here, we describe the development and status of the MT_CKD (MlawerTobinCloughKneizysDavies) water vapour continuum absorption model. The perspective adopted in developing the MT_CKD model has been to constrain the model so that it is consistent with quality analyses of spectral atmospheric and laboratory measurements of the foreign and self continuum. For field measurements, only cases for which the characterization of the atmospheric state has been highly scrutinized have been used. Continuum coefficients in spectral regions that have not been subject to compelling analyses are determined by a mathematical formulation of the spectral shape associated with each water vapour monomer line. This formulation, which is based on continuum values in spectral regions in which the coefficients are well constrained by measurements, is applied consistently to all water vapour monomer lines from the microwave to the visible. The results are summed-up (separately for the foreign and self) to obtain continuum coefficients from 0 to 20 000 cm−1. For each water vapour line, the MT_CKD line shape formulation consists of two components: exponentially decaying far wings of the line plus a contribution from a water vapour molecule undergoing a weak interaction with a second molecule. In the MT_CKD model, the first component is the primary agent for the continuum between water vapour bands, while the second component is responsible for the majority of the continuum within water vapour bands. The MT_CKD model should be regarded as a semi-empirical model with strong constraints provided by the known physics. Keeping the MT_CKD continuum consistent with current observational studies necessitates periodic updates to the water vapour continuum coefficients. In addition to providing details on the MT_CKD line shape formulation, we describe the most recent update to the model, MT_CKD_2.5, which is based on an analysis of satellite- and ground-based observations from 2385 to 2600 cm−1 (approx. 4 μm).

    Footnotes

    One contribution of 17 to a Theo Murphy Meeting Issue ‘Water in the gas phase’.

    References

    • 1
      Elsasser W. M.. 1938 Mean absorption and equivalent absorption coefficient of a band spectrum. Phys. Rev. 54, 126–129.doi:10.1103/PhysRev.54.126 (doi:10.1103/PhysRev.54.126). CrossrefGoogle Scholar
    • 2
      Clough S. A., Iacono M. J.& Moncet J.-L.. 1992 Line-by-line calculation of atmospheric fluxes and cooling rates: application to water vapor. J. Geophys. Res. 97, 15 761–15 785.doi:10.1029/92JD01419 (doi:10.1029/92JD01419). Crossref, ISIGoogle Scholar
    • 3
      Clough S. A., Kneizys F. X.& Davies R. W.. 1989 Line shape and the water vapor continuum. Atmos. Res. 23, 229–241.doi:10.1016/0169-8095(89)90020-3 (doi:10.1016/0169-8095(89)90020-3). CrossrefGoogle Scholar
    • 4
      Clough S. A., Kneizys F. X., Davies R., Gamache R.& Tipping R.. 1980 Theoretical line shape for H2O vapor: application to the continuum. Atmospheric water vapor, vol. 52 (eds , Deepak A., Wilkerson T. D.& Ruhnke L. H.). New York, NY: Academic Press. Google Scholar
    • 5
      Burch D. E.& Alt R. L.. 1984 Continuum absorption by H2O in the 700–1200 cm−1 and 2400–2800 cm−1 windows. Report AFGL-TR-84-0128, Air Force Geophys. Laboratory, Hanscom AFB, MA. Google Scholar
    • 6
      Van Vleck J. H.& Huber D. L.. 1977 Absorption, emission and linebreadths: a semihistorical perspective. Rev. Mod. Phys. 49, 939.doi:10.1103/RevModPhys.49.939 (doi:10.1103/RevModPhys.49.939). Crossref, ISIGoogle Scholar
    • 7
      Clough S. A., Shephard M. W., Mlawer E. J., Delamere J. S., Iacono M. J., Cady-Pereira K., Boukabara S.& Brown P. D.. 2005 Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 91, 233–244.doi:10.1016/j.jqsrt.2004.05.058 (doi:10.1016/j.jqsrt.2004.05.058). Crossref, ISIGoogle Scholar
    • 8
      Ma Q.& Tipping R. H.. 2002 The frequency detuning correction and the asymmetry of line shapes: the far wings of H2O–H2O. J. Chem. Phys. 116, 4102–4115.doi:10.1063/1.1436115 (doi:10.1063/1.1436115). Crossref, ISIGoogle Scholar
    • 9
      Thibault F., Menoux V., Le Doucen R., Rosenman L., Hartmann J.-M.& Boulet C.. 1996 Infrared collision-induced absorption by O2 near 6.4 microns for atmospheric applications: measurements and empirical modeling. Appl. Opt. 35, 5911–5917.doi:10.1364/AO.35.005911 (doi:10.1364/AO.35.005911). Crossref, PubMed, ISIGoogle Scholar
    • 10
      Solomon S., Portmann R. W., Sanders R. W.& Daniel J. S.. 1998 Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth's atmosphere. J. Geophys. Res. 103, 3847–3858.doi:10.1029/97JD03285 (doi:10.1029/97JD03285). Crossref, ISIGoogle Scholar
    • 11
      Niro F., Jucks K.& Hartmann J.-M.. 2005 Spectra calculations in central and wing regions of CO2 IR bands. IV. Software and database for the computation of atmospheric spectra. J. Quant. Spectrosc. Radiat. Transf. 95, 469–481.doi:10.1016/j.jqsrt.2004.11.011 (doi:10.1016/j.jqsrt.2004.11.011). Crossref, ISIGoogle Scholar
    • 12
      Lamouroux J., Tran H., Laraia A. L., Gamache R. R., Rothman L. S., Gordon I. E.& Hartmann J.-M.. 2010 Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5–2.3 μm region. J. Quant. Spectrosc. Radiat. Transf. 111, 2321–2331.doi:10.1016/j.jqsrt.2010.03.006 (doi:10.1016/j.jqsrt.2010.03.006). Crossref, ISIGoogle Scholar
    • 13
      Burch D. E.. 1982 Continuum absorption by H2O. Report AFGL-TR-81-0300, Air Force Geophys. Laboratory, Hanscom AFB, MA. Google Scholar
    • 14
      Clough S. A.& Iacono M. J.. 1995 Line-by-line calculations of atmospheric fluxes and cooling rates. II. Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons. J. Geophys. Res. 100, 16 519–16 535.doi:10.1029/95JD01386 (doi:10.1029/95JD01386). Crossref, ISIGoogle Scholar
    • 15
      Han Y., Shaw J. A., Churnside J. H., Brown P. D.& Clough S. A.. 1997 Infrared spectral radiance measurements in the tropical Pacific atmosphere. J. Geophys. Res. 102, 4353–4356.doi:10.1029/96JD03717 (doi:10.1029/96JD03717). Crossref, ISIGoogle Scholar
    • 16
      Mlawer E. J., Taubman S. J., Brown P. D., Iacono M. J.& Clough S. A.. 1997 Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102, 16 663–16 682.doi:10.1029/97JD00237 (doi:10.1029/97JD00237). Crossref, ISIGoogle Scholar
    • 17
      Tobin D. C., et al.. 1999 Downwelling spectral radiance observations at the SHEBA ice station: water vapor continuum measurements from 17–26 micrometer. J. Geophys. Res. 104, 2081–2092.doi:10.1029/1998JD200057 (doi:10.1029/1998JD200057). Crossref, ISIGoogle Scholar
    • 18
      Stokes G. M.& Schwartz S. E.. 1994 The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc. 75, 1201–1222.doi:10.1175/1520-0477(1994)075%3C1201:TARMPP%3E2.0.CO;2 (doi:10.1175/1520-0477(1994)075<1201:TARMPP>2.0.CO;2). Crossref, ISIGoogle Scholar
    • 19
      Knuteson R. O., et al.. 2004 The Atmospheric Emitted Radiance Interferometer (AERI). Part I. Instrument design. J. Atmos. Oceanic Technol. 21, 1763–1776.doi:10.1175/JTECH-1662.1 (doi:10.1175/JTECH-1662.1). Crossref, ISIGoogle Scholar
    • 20
      Knuteson R. O., et al.. 2004 The Atmospheric Emitted Radiance Interferometer (AERI). Part II. Instrument performance. J. Atmos. Oceanic Technol. 21, 1777–1789.doi:10.1175/JTECH-1663.1 (doi:10.1175/JTECH-1663.1). Crossref, ISIGoogle Scholar
    • 21
      Smith W. L., Knuteson R. O., Revercomb H. E., Best F., Dedecker R.& Howell H. B.. 1993 GB-HIS: a measurement system for continuous profiling of the boundary layer thermodynamic structure. Proc. 8th Symp. Meteor. Obs and Instr., Anaheim, CA, 17–22 January 1993, pp. J180–J183. Boston, MA: American Meteorological Society. Google Scholar
    • 22
      Turner D. D., et al.. 2004 The QME AERI LBLRTM: a closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci. 61, 2657–2675.doi:10.1175/JAS3300.1 (doi:10.1175/JAS3300.1). Crossref, ISIGoogle Scholar
    • 23
      Tobin D. C., Strow L. L., Lafferty W. J.& Olson W. B.. 1996 Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor. Appl. Opt. 35, 4724–4734.doi:10.1364/AO.35.004724 (doi:10.1364/AO.35.004724). Crossref, PubMed, ISIGoogle Scholar
    • 24
      Delamere J. S., Clough S. A., Payne V. H., Mlawer E. J., Turner D. D.& Gamache R. R.. 2010 A far-infrared radiative closure study in the Arctic: application to water vapor. J. Geophys. Res. 115, D17106 doi:10.1029/2009JD012968 (doi:10.1029/2009JD012968). Crossref, ISIGoogle Scholar
    • 25
      Turner D.& Mlawer E.. 2010 The radiative heating in underexplored bands campaigns. Bull. Amer. Meteorol. Soc. 91, 911–923.doi:10.1175/2010BAMS2904.1 (doi:10.1175/2010BAMS2904.1). Crossref, ISIGoogle Scholar
    • 26
      Payne V. H., Mlawer E. J., Cady-Pereira K. E.& Moncet J.-L.. 2011 Water vapor continuum absorption in the microwave. IEEE Trans. Geosci. Remote Sens. 49, 2194–2208.doi:10.1109/TGRS.2010.2091416 (doi:10.1109/TGRS.2010.2091416). Crossref, ISIGoogle Scholar
    • 27
      Paynter D. J., Ptashnik I. V., Shine K. P., Smith K. M., McPheat R.& Williams R. G.. 2009 Laboratory measurements of the water vapour continuum in the 1200–8000 cm−1 region between 293 K and 351 K. J. Geophys. Res. 114, D21301 doi:10.1029/2008JD011355 (doi:10.1029/2008JD011355). Crossref, ISIGoogle Scholar
    • 28
      Kjaergaard H. G., Garden A. L., Chaban G. M., Gerber R. B., Matthews D. A.& Stanton J. F.. 2008 Calculation of vibrational transition frequencies and intensities in water dimer: comparison of different vibrational approaches. J. Phys. Chem. A 112, 4324–4335.doi:10.1021/jp710066f (doi:10.1021/jp710066f). Crossref, PubMed, ISIGoogle Scholar
    • 29
      Aumann H. H., et al.. 2003 AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. Geosci. Remote Sens. 41, 253–264.doi:10.1109/TGRS.2002.808356 (doi:10.1109/TGRS.2002.808356). Crossref, ISIGoogle Scholar
    • 30
      Richter A.& Wagner T. (eds) 2009 The IASI instrument onboard the METOP satellite: first results. Atmospheric Chemistry and Physics special issue. See http://www.atmos-chem-phys.net/special_issue123.html. Google Scholar
    • 31
      Lafferty W., Solodov A. M., Weber A., Olson W. B.& Hartmann J.-M.. 1996 Infrared collision-induced absorption by N2 near 4.3 mm for atmospheric applications: measurements and empirical modeling. Appl. Opt. 35, 5911–5917.doi:10.1364/AO.35.005911 (doi:10.1364/AO.35.005911). Crossref, PubMed, ISIGoogle Scholar
    • 32
      Baranov Yu. I.. 2011 The continuum absorption in H2O + N2 mixtures in the 3–5 μm spectral region at temperatures from 326 to 363 K. J. Quant. Spectrosc. Radiat. Transf 112, 2281–2286. Crossref, ISIGoogle Scholar
    • 33
      Flaud J.-M., Piccolo C., Carli B., Perrin A., Coudert L. H., Teffo J.-L.& Brown L. R.. 2003 Molecular line parameters for the MI-PAS (Michelson Interferometer for Passive Atmospheric Sounding) experiment. J. Atmos. Ocean Opt. 16, 172–182. Google Scholar
    • 34
      Tashkun S. A., Perevalov V. I., Teffo J.-L.& Tyuterev VI G.. 1999 Global fitting of 12C16O2 vibration-rotation line intensities using the effective operator approach. J. Quant. Spectrosc. Rad. Trans. 62, 571–598.doi:10.1016/S0022-4073(98)00138-1 (doi:10.1016/S0022-4073(98)00138-1). Crossref, ISIGoogle Scholar
    • 35
      Miloshevich L., Vomel H., Whiteman D.& Leblanc T.. 2009 Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements. J. Geophys. Res. 114, D11305.doi:10.1029/2008JD011565 (doi:10.1029/2008JD011565). Crossref, ISIGoogle Scholar
    • 36
      Strow L. L., Hannon S. E., De-Souza Machado S., Mottler H. E.& Tobin D. C.. 2006 Validation of the Atmospheric Infrared Sounder radiative transfer algorithm. J. Geophys. Res. 111, D09S06.doi:10.1029/2005JD006146 (doi:10.1029/2005JD006146). Crossref, ISIGoogle Scholar
    • 37
      Tobin D. C., et al.. 2006 Atmospheric radiation measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation. J. Geophys. Res. 111, D09S14.doi:10.1029/2005JD006103 (doi:10.1029/2005JD006103). Crossref, ISIGoogle Scholar
    • 38
      Matricardi M.. 2009 An assessment of the accuracy of the RTTOV fast radiative transfer model using IASI data. Atmos. Chem. Phys. Discuss. 9, 9491–9535. CrossrefGoogle Scholar
    • 39
      Cady-Pereira K. E., Shephard M. W., Turner D. D., Mlawer E. J.& Clough S. A.. 2008 Improved daytime column integrated precipitable water vapor from Vaisala Radiosonde Humidity Sensors. J. Atmos. Oceanic Tech. 25, 873–883.doi:10.1175/2007JTECHA1027.1 (doi:10.1175/2007JTECHA1027.1). Crossref, ISIGoogle Scholar
    • 40
      Turner D. D., Lesht B. M., Clough S. A., Liljegren J. C., Revercomb H. E.& Tobin D. C.. 2003 Dry bias and variability in Vaisala RS80-H radiosondes: the ARM experience. J. Atmos. Oceanic Tech. 20, 117–132.doi:10.1175/1520-0426(2003)020%3C0117:DBAVIV%3E2.0.CO;2 (doi:10.1175/1520-0426(2003)020<0117:DBAVIV>2.0.CO;2). Crossref, ISIGoogle Scholar
    • 41
      Bicknell W. E., Di Cecca S., Griffin M. K., Schwartz S. D.& Flusberg A.. 2006 Search for low-absorption regions in the 1.6- and 2.1-mm atmospheric windows. J. Direct. Energy 2, 151–161. Google Scholar
    • 42
      Fulghum S. F.& Tilleman M. M.. 1991 Interferometric calorimeter for the measurement of water-vapor absorption. J. Opt. Soc. Am. B 8, 2401–2413.doi:10.1364/JOSAB.8.002401 (doi:10.1364/JOSAB.8.002401). Crossref, ISIGoogle Scholar
    • 43
      Baranov Yu. I.& Lafferty W. J.. 2011 The water-vapour continuum and selective absorption in the 3 to 5 μm spectral region at temperatures from 311 to 363 K. J. Quant. Spectrosc. Radiat. Transf. 112, 1304–1313.doi:10.1016/j.jqsrt.2011.01.024 (doi:10.1016/j.jqsrt.2011.01.024). Crossref, ISIGoogle Scholar
    • 44
      Ptashnik I. V., McPheat R. A., Shine K. P., Smith K. M.& Williams R. G.. 2011 Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements. J. Geophys. Res. 116, D16305 doi:10.1029/2011JD015603 (doi:10.1029/2011JD015603). Crossref, ISIGoogle Scholar
    • 45
      Ptashnik I. V.. 2008 Evidence for the contribution of water dimers to the near-IR water vapour self continuum. J. Quant. Spectrosc. Radiat. Transf. 109, 831–852.doi:10.1016/j.jqsrt.2007.09.004 (doi:10.1016/j.jqsrt.2007.09.004). Crossref, ISIGoogle Scholar