Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

    The propagation of detonations through several fuel–air mixtures with spatially varying fuel concentrations is examined numerically. The detonations propagate through two-dimensional channels, inside of which the gradient of mixture composition is oriented normal to the direction of propagation. The simulations are performed using a two-component, single-step reaction model calibrated so that one-dimensional detonation properties of model low- and high-activation-energy mixtures are similar to those observed in a typical hydrocarbon–air mixture. In the low-activation-energy mixture, the reaction zone structure is complex, consisting of curved fuel-lean and fuel-rich detonations near the line of stoichiometry that transition to decoupled shocks and turbulent deflagrations near the channel walls where the mixture is extremely fuel-lean or fuel-rich. Reactants that are not consumed by the leading detonation combine downstream and burn in a diffusion flame. Detonation cells produced by the unstable reaction front vary in size across the channel, growing larger away from the line of stoichiometry. As the size of the channel decreases relative to the size of a detonation cell, the effect of the mixture composition gradient is lessened and cells of similar sizes form. In the high-activation-energy mixture, detonations propagate more slowly as the magnitude of the mixture composition gradient is increased and can be quenched in a large enough gradient.


    One contribution of 12 to a Theme Issue ‘The physics, chemistry and dynamics of explosions’.


    • 1
      Thomas G.. 2012Some observations on the initiation and onset of detonation. Phil. Trans. R. Soc. A 370, 715-739doi:10.1098/rsta.2011.0368 (doi:10.1098/rsta.2011.0368). Link, ISIGoogle Scholar
    • 2
      Denisov Y. N.& Troshin Y. K.. 1959Pulsiruyushchaya I spinovaya detonatsiya gazovykh smesei v trubakh. Dokl. Akad. Nauk SSSR 125, 110-113. Google Scholar
    • 3
      Voitsekhovsky B. V., Mitrofanov V. V.& Topchain M. E.. 1963Strukura fronta detonatsiyaNovosibirsk, RussiaIzd. Sib. Otd. AN SSSR. Google Scholar
    • 4
      Zipf R. K.. 2010Methane–air detonation experiments at NIOSH Lake Lynn Laboratory. Proc. 8th Int. Symp. on Hazards, Prevention, and Mitigation of Industrial Explosions, Yokohama, Japan, 5–10 September 20105-10. Google Scholar
    • 5
      Shepherd J. E.. 2009Detonation in gases. Proc. Combust. Inst. 32, 83-98doi:10.1016/j.proci.2008.08.006 (doi:10.1016/j.proci.2008.08.006). CrossrefGoogle Scholar
    • 6
      Lee J. H. S.. 2008The detonation phenomenonCambridge, UKCambridge University Pressdoi:10.1017/CBO9780511754708 (doi:10.1017/CBO9780511754708). CrossrefGoogle Scholar
    • 7
      Bull D. C., Elsworth J. E., McLeod M. A.& Hughes D.. 1981Initiation of unconfined gas detonations in hydrocarbon–air mixtures by a sympathetic mechanism. Prog. Astronaut. Aeronaut. 75, 61-72. Google Scholar
    • 8
      Donato M., Donato L.& Lee J. H.. 1981Transmission of detonation through composition gradients. Proc. 1st Specialist Meeting (International) of the Combustion Institute, Bordeaux, France, 20–25 July 1981Pittsburgh, PACombustion Institute. Google Scholar
    • 9
      Bjerketvedt D., Sonju O. K.& Moen I. O.. 1986The influence of experimental condition on the reinitiation of detonation across an inert region. Prog. Astronaut. Aeronaut. 106, 109-130. Google Scholar
    • 10
      Engebretsen T., Bjerketvedt D.& Sonju O. K.. 1992Propagation of gaseous detonation through regions of low reactivity. Prog. Astronaut. Aeronaut. 153, 324-346. Google Scholar
    • 11
      Thomas G. O., Sutton P.& Edwards D. H.. 1991The behavior of detonation waves at concentration gradients. Combust. Flame 84, 312-322doi:10.1016/0010-2180(91)90008-Y (doi:10.1016/0010-2180(91)90008-Y). Crossref, ISIGoogle Scholar
    • 12
      Teodorczyk A.& Benoan F.. 1996Interaction of detonation with inert gas zone. Shock Waves 6, 211-223doi:10.1007/BF02511378 (doi:10.1007/BF02511378). Crossref, ISIGoogle Scholar
    • 13
      Kuznetsov M. S., Dorofeev S. B., Efimenko A. A., Alekseev V. I.& Breitung W.. 1997Experimental and numerical studies on transmission of gaseous detonation to a less sensitive mixture. Shock Waves 7, 297-304doi:10.1007/s001930050084 (doi:10.1007/s001930050084). Crossref, ISIGoogle Scholar
    • 14
      Kuznetsov M. S., Alekseev V. I., Dorofeev S. B., Matsukov I. D.& Boccio J. L.. 1998Detonation propagation, decay, and reinitiation in nonuniform gaseous mixtures. Proc. Combust. Inst. 27, 2241-2247. CrossrefGoogle Scholar
    • 15
      Sochet I., Lamy T.& Brossard J.. 2000Experimental investigation on the detonability of non-uniform mixtures. Shock Waves 10, 363-367doi:10.1007/s001930000066 (doi:10.1007/s001930000066). Crossref, ISIGoogle Scholar
    • 16
      Li J., Lai W. H., Chung K.& Lu F. K.. 2008Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air. Combust. Flame 154, 331-345doi:10.1016/j.combustflame.2008.04.010 (doi:10.1016/j.combustflame.2008.04.010). Crossref, ISIGoogle Scholar
    • 17
      Liu J. C., Liou J. J., Sichel M., Kauffman C. W.& Nicholls J. A.. 1987Diffraction and transmission of a detonation into a bounding explosive layer. Proc. Combust. Inst. 21, 1659-1668. Google Scholar
    • 18
      Sichel M., Jones D. A., Oran E. S.& Guirguis R. H.. 1991Detonation transmission in layered explosives. Proc. Combust. Inst. 23, 1805-1811. CrossrefGoogle Scholar
    • 19
      Tonello N. A., Sichel M.& Kauffman C. W.. 1995Mechanisms of detonation transmission in layered H2–O2 mixtures. Shock Waves 5, 225-238doi:10.1007/BF01419004 (doi:10.1007/BF01419004). Crossref, ISIGoogle Scholar
    • 20
      Oran E. S., Jones D. A.& Sichel M.. 1992Numerical simulations of detonation transmission. Proc. R. Soc. Lond. A 436, 267-297doi:10.1098/rspa.1992.0018 (doi:10.1098/rspa.1992.0018). Link, ISIGoogle Scholar
    • 21
      Ishii K., Takahashi Y.& Tsuboi T.. 2001Detonation propagation in hydrogen–oxygen mixtures with concentration gradients. Proc. 18th Int. Colloquium on the Dynamics of Explosions and Reactive Systems, Seattle, WA, 29 July–3 August 2001paper 153. Google Scholar
    • 22
      Kojima M., Ishii K.& Tsuboi T.. 2003Propagation behavior of detonation waves in hydrogen–oxygen mixtures with concentration gradient. Proc. 19th Int. Colloquium on the Dynamics of Explosions and Reactive Systems, Hakone, Japan, 27 July–1 August 2003. Google Scholar
    • 23
      Ishii K.& Kojima M.. 2007Behavior of detonation propagation in mixtures with concentration gradients. Shock Waves 17, 95-102doi:10.1007/s00193-007-0093-y (doi:10.1007/s00193-007-0093-y). Crossref, ISIGoogle Scholar
    • 24
      Lieberman D. H.& Shepherd J. E.. 2007Detonation interaction with a diffuse interface and subsequent chemical reaction. Shock Waves 16, 421-429doi:10.1007/s00193-007-0080-3 (doi:10.1007/s00193-007-0080-3). Crossref, ISIGoogle Scholar
    • 25
      Calhoon W. H.& Sinha N.. 2005Detonation wave propagation in concentration gradient. Proc. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 10–13 January 2005Reston, VAAmerican Institute of Aeronautics and Astronauticspaper AIAA-2005-1167. Google Scholar
    • 26
      Dold J.. 1989Flame propagation in a nonuniform mixture—analysis of a slowly varying triple flame. Combust. Flame 76, 71-88doi:10.1016/0010-2180(89)90079-5 (doi:10.1016/0010-2180(89)90079-5). Crossref, ISIGoogle Scholar
    • 27
      Kioni P., Rogg B., Bray K.& Liñán A.. 1993Flame spread in laminar mixing layers—the triple flame. Combust. Flame 95, 276-290doi:10.1016/0010-2180(93)90132-M (doi:10.1016/0010-2180(93)90132-M). Crossref, ISIGoogle Scholar
    • 28
      Ruetsch G. R., Vervisch L.& Liñán A.. 1995Effects of heat release on triple flames. Phys. Fluids 7, 1447-1454doi:10.1063/1.868531 (doi:10.1063/1.868531). Crossref, ISIGoogle Scholar
    • 29
      Kessler D. A., Gamezo V. N.& Oran E. S.. 2011Detonation propagation through a gradient in fuel composition. Proc. 23rd Int. Colloquium on the Dynamics of Explosions and Reacting Systems, Irvine, CA, 24–29 July 2011paper 267. Google Scholar
    • 30
      Ettner F., Vollmer K. G.& Sattlemayer T.. 2001Mach reflection in detonations propagating through a gas with a concentration gradient. Proc. 23rd Int. Colloquium on the Dynamics of Explosions and Reacting Systems, Irvine, CA, 24–29 July 2011paper 73. Google Scholar
    • 31
      Gamezo V. N., Ogawa T.& Oran E. S.. 2008Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing. Combust. Flame 155, 302-315doi:10.1016/j.combustflame.2008.06.004 (doi:10.1016/j.combustflame.2008.06.004). Crossref, ISIGoogle Scholar
    • 32
      Kessler D. A., Gamezo V. N.& Oran E. S.. 2010Simulations of flame acceleration and deflagration-to-detonation transitions in methane–air systems. Combust. Flame 157, 2063-2077doi:10.1016/j.combustflame.2010.04.011 (doi:10.1016/j.combustflame.2010.04.011). Crossref, ISIGoogle Scholar
    • 33
      Fernández–Tarrazo E., Sánchez A. L., Liñán A.& Williams F. A.. 2006A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame 147, 32-38doi:10.1016/j.combustflame.2006.08.001 (doi:10.1016/j.combustflame.2006.08.001). Crossref, ISIGoogle Scholar
    • 34
      Khokhlov A. M.. 1998Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations. J. Comput. Phys. 143, 519-543doi:10.1006/jcph.1998.9998 (doi:10.1006/jcph.1998.9998). Crossref, ISIGoogle Scholar
    • 35
      Mott D. R., Oran E. S.& van Leer B.. 2000A quasi-steady-state solver for the stiff ordinary differential equations of reaction kinetics. J. Comput. Phys. 164, 407-428doi:10.1006/jcph.2000.6605 (doi:10.1006/jcph.2000.6605). Crossref, ISIGoogle Scholar
    • 36
      Gamezo V. N., Khokhlov A. M.& Oran E. S.. 1999Secondary detonation cells in systems with high activation energy. Proc. 17th Int. Colloquium on the Dynamics of Explosions and Reactive Systems, Heidelberg, Germany, 25–30 July 1999paper 237. Google Scholar
    • 37
      Gamezo V. N., Desbordes D.& Oran E. S.. 1999Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154-165doi:10.1016/S0010-2180(98)00031-5 (doi:10.1016/S0010-2180(98)00031-5). Crossref, ISIGoogle Scholar
    • 38
      Gordon S.& McBride B. J.. 1971Computer program for calculation of complex chemical equilibrium composition, rocket performance, incident and reflected shocks and Chapman–Jouguet detonation. NASA report SP-273 Cleveland, USA. Google Scholar
    • 39
      Kuznetsov M., Ciccarelli G., Dorofeev S., Alekseev V., Yankin Yu.& Kim T. H.. 2002DDT in methane–air mixtures. Shock Waves 12, 215-220doi:10.1007/s00193-002-0155-0 (doi:10.1007/s00193-002-0155-0). Crossref, ISIGoogle Scholar
    • 40
      Gavrikov A. I., Efimenko A. A.& Dorofeev S. B.. 2000A model for detonation cell size prediction from chemical kinetics. Combust. Flame 120, 19-33doi:10.1016/S0010-2180(99)00076-0 (doi:10.1016/S0010-2180(99)00076-0). Crossref, ISIGoogle Scholar
    • 41
      Tsatsaronis G.. 1978Prediction of propagating laminar flames in methane, oxygen, nitrogen mixtures. Combust. Flame 33, 217-239doi:10.1016/0010-2180(78)90062-7 (doi:10.1016/0010-2180(78)90062-7). Crossref, ISIGoogle Scholar
    • 42
      Kessler D. A., Gamezo V. N.& Oran E. S.. 2011Multilevel detonation cell structures in methane–air mixtures. Proc. Combust. Inst. 33, 2211-2218doi:10.1016/j.proci.2010.07.071 (doi:10.1016/j.proci.2010.07.071). CrossrefGoogle Scholar
    • 43
      Gamezo V. N., Vasil'ev A. A., Khokhlov A. M.& Oran E. S.. 2000Fine cellular structures produced by marginal detonations. Proc. Combust. Inst. 28, 611-617doi:10.1016/S0082-0784(00)80261-1 (doi:10.1016/S0082-0784(00)80261-1). CrossrefGoogle Scholar