Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Restricted accessResearch article

Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines

W. M. J. Batten

W. M. J. Batten

Sustainable Energy Research Group, Energy and Climate Change Division, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK

[email protected]

Google Scholar

Find this author on PubMed

,
M. E. Harrison

M. E. Harrison

Marine Current Turbines Ltd, Bristol & Bath Science Park, Dirac Crescent, Emersons Green, Bristol, BS16 7FR

Google Scholar

Find this author on PubMed

and
A. S. Bahaj

A. S. Bahaj

Sustainable Energy Research Group, Energy and Climate Change Division, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK

Google Scholar

Find this author on PubMed

Published:https://doi.org/10.1098/rsta.2012.0293

    The actuator disc-RANS model has widely been used in wind and tidal energy to predict the wake of a horizontal axis turbine. The model is appropriate where large-scale effects of the turbine on a flow are of interest, for example, when considering environmental impacts, or arrays of devices. The accuracy of the model for modelling the wake of tidal stream turbines has not been demonstrated, and flow predictions presented in the literature for similar modelled scenarios vary significantly. This paper compares the results of the actuator disc-RANS model, where the turbine forces have been derived using a blade-element approach, to experimental data measured in the wake of a scaled turbine. It also compares the results with those of a simpler uniform actuator disc model. The comparisons show that the model is accurate and can predict up to 94 per cent of the variation in the experimental velocity data measured on the centreline of the wake, therefore demonstrating that the actuator disc-RANS model is an accurate approach for modelling a turbine wake, and a conservative approach to predict performance and loads. It can therefore be applied to similar scenarios with confidence.

    Footnotes

    One contribution of 14 to a Theme Issue ‘New research in tidal current energy’.

    References

    • 1
      Zori LAJ& Rajagopalan RG. 1995 Navier–Stokes calculations of rotor-airframe interaction in forward flight. J. Am. Helicopter Soc. 40, 57–67. Crossref, Web of ScienceGoogle Scholar
    • 2
      Molland AF& Turnock SR. 1996 A compact computational method for predicting forces on a rudder in a propeller slipstream. Trans. R. Inst. Naval Archit. 138, 227–244. Google Scholar
    • 3
      Ammara I, Leclerc C& Masson C. 2002 A viscous three-dimensional differential/actuator-disk method for the aerodynamic analysis of wind farms. J. Solar Energy Eng. 124, 345–375.doi:10.1115/1.1510870 (doi:10.1115/1.1510870). Crossref, Web of ScienceGoogle Scholar
    • 4
      MacLeod A, Barnes S, Rados K& Bryden I. 2002 Wake effects in tidal current turbine farms. In Proc. Int. Conf. on Marine Renewable Energy, Newcastle upon Tyne, UK, September 2002, pp. 49–53. Google Scholar
    • 5
      Batten WMJ& Bahaj AS. 2006 CFD simulation of a small farm of horizontal axis marine current turbines. Proc. World Renewable Energy Congress (WREC IX), Florence, Italy. London, UK: Elsevier. Google Scholar
    • 6
      Sun X, Chick J& Bryden I. 2008 Laboratory-scale simulation of energy extraction from tidal currents. Renew. Energy 33, 1267–1274.doi:10.1016/j.renene.2007.06.018 (doi:10.1016/j.renene.2007.06.018). Crossref, Web of ScienceGoogle Scholar
    • 7
      Gant S& Stallard T. 2008 Modelling a tidal turbine in unsteady flow. ISOPE-2008: 18th Int. Offshore and Offshore and Polar Eng. Conf. Proc., Vancouver, Canada, July 2008.. Google Scholar
    • 8
      Bai L& Spence RRG. 2009 Investigation of the influence of array arrangement and spacing on tidal energy converter (TEC) performance using a 3-dimensional CFD model. Proc. 8th European Wave and Tidal Energy Conf., pp. 654–660. Google Scholar
    • 9
      Williams AJ, Croft TN, Masters I, Bennett CR, Patterson SG& Willis MR. 2010 A combined BEM-CFD model for tidal stream turbines. Proc. 3rd Int. Conf. on Ocean Energy, Bilbao, Spain, October 2010.. Google Scholar
    • 10
      Lartiga C& Crawford C. 2010 Actuator disk modeling in support of tidal turbine rotor testing. Proc. 3rd Int. Conf. on Ocean Energy, Bilbao, Spain, October 2010. Google Scholar
    • 11
      Roc T, Conley DC& Greaves D. 2010 Accounting for turbulence in a regional numerical model for tidal current turbine farm planning. Proc. 3rd Int. Conf. on Ocean Energy, Bilbao, Spain, October 2010.. Google Scholar
    • 12
      Harrison ME, Batten WMJ, Myers LE& Bahaj AS. 2010 Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. Renew. Power Gener., IET 4, 613–627.doi:10.1049/iet-rpg.2009.0193 (doi:10.1049/iet-rpg.2009.0193). Crossref, Web of ScienceGoogle Scholar
    • 13
      Harrison ME, Batten WMJ& Bahaj AS. 2010 A blade element actuator disc approach applied to tidal stream turbines. Proc. OCEANS 2010, Seattle, WA, USA.. CrossrefGoogle Scholar
    • 14
      Turnock SR, Phillips AB, Banks J& Nicholls-Lee RF. 2011 Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines. Ocean Eng. 38, 1300–1307.doi:10.1016/j.oceaneng.2011.05.018 (doi:10.1016/j.oceaneng.2011.05.018). Crossref, Web of ScienceGoogle Scholar
    • 15
      Myers LE& Bahaj AS. 2010 Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Eng. 37, 218–227.doi:10.1016/j.oceaneng.2009.11.004 (doi:10.1016/j.oceaneng.2009.11.004). Crossref, Web of ScienceGoogle Scholar
    • 16
      Troldborg N& Mikkelsen R. 2007 Actuator line simulation of wake of wind turbine operating in turbulent inflow. J. Phys. Conf. Ser. 75, 012063.doi:10.1088/1742-6596/75/1/012063 (doi:10.1088/1742-6596/75/1/012063). CrossrefGoogle Scholar
    • 17
      Mikkelsen R. 2003 Actuator disc methods applied to wind turbines. PhD thesis, Technical University of Denmark. Google Scholar
    • 18
      Blunden LS, Batten WMJ, Harrison ME& Bahaj AS. 2009 Comparison of boundary-layer and field models for simulation of flow through multiple-row tidal fences. Proc. 8th European Wave and Tidal Energy Conf., Uppsala, Sweden, September 2009.. Google Scholar
    • 19
      Harrison ME, Batten WMJ, Myers LE& Bahaj AS. 2009 A comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. Proc. 8th European Wave and Tidal Energy Conf., Uppsala, Sweden, September 2009. Google Scholar
    • 20
      Harrison ME, Batten WMJ, Blunden LS, Myers LE& Bahaj AS. 2008 Comparisons of a large tidal turbine array using the boundary layer and field wake interaction models. Proc. 2nd Int. Conf. on Ocean Energy (ICOE 2008), Brest, France, October 2008.. Google Scholar
    • 21
      Myers LE& Bahaj AS. 2009 Near wake properties of horizontal axis marine current turbines. Proc. 8th European Wave and Tidal Energy Conf., Uppsala, Sweden, September 2009. Google Scholar
    • 22
      Galloway PW, Myers LE& Bahaj AS. 2010 Studies of a scale tidal turbine in close proximity to waves. Proc. 3rd Int. Conf. on Ocean Energy, Bilbao, Spain, October 2010.. Google Scholar
    • 23
      Crespo A& Hernandez J. 1996 Turbulence characteristics in wind-turbine wakes. J. Wind Eng. Ind. Aerodyn. 61, 71–85.doi:10.1016/0167-6105(95)00033-X (doi:10.1016/0167-6105(95)00033-X). Crossref, Web of ScienceGoogle Scholar
    • 24
      Batchelor GK (ed). 1963 The scientific papers of Sir Geoffrey Ingram Taylor. Cambridge, UK: Cambridge University Press. Google Scholar
    • 25
      Drela M. 1989 XFOIL: an analysis and design system for low Reynolds number airfoils. Conf. on Low Reynolds Number Airfoil Aerodynamics. Berlin, Germany: Springer. See http://www.ansys.com. Google Scholar
    • 26
      Batten WMJ, Bahaj AS, Molland AF& Chaplin JR. 2008 The prediction of the hydrodynamic performance of marine current turbines. Renew. Energy 33, 1085–1096.doi:10.1016/j.renene.2007.05.043 (doi:10.1016/j.renene.2007.05.043). Crossref, Web of ScienceGoogle Scholar
    • 27
      Bahaj AS, Molland AF, Chaplin JR& Batten WMJ. 2007 Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energy 32, 407–426.doi:10.1016/j.renene.2006.01.012 (doi:10.1016/j.renene.2006.01.012). Crossref, Web of ScienceGoogle Scholar
    • 28
      Ansys. 2010 Ansys CFX/ICEM, user guide version 12. Google Scholar
    • 29
      Harrison ME. 2011 The accuracy of the actuator disc-RANS model for predicting the performance and far wake of a horizontal axis tidal stream turbine. PhD dissertation, Faculty of Engineering and the Environment, University of Southampton, UK. Google Scholar
    • 30
      Menter F, Kuntz M& Langtry R. 2003 Ten years of industrial experience with the SST turbulence model. Proc. 4th Int. Symp. on Turbulence, Heat and Mass Transfer, Antalya, Turkey, October 2003. Redding, CT: Begell House. Google Scholar
    • 31
      Houlsby G, Draper S& Oldfield M. 2008 Application of linear momentum actuator disc theory to open channel flow. Technical report 2296-08, Oxford University Engineering Laboratory, UK. Google Scholar
    • 32
      Celik IB, Ghia U, Coleman H& Raad PE. 2008 Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130, 078001.doi:10.1115/1.2960953 (doi:10.1115/1.2960953). Crossref, Web of ScienceGoogle Scholar
    • 33
      Walpole RH& Myers RE. 1972 Probability and statistics for engineers and scientists. New York, NY: Macmillan. Google Scholar
    • 34
      Barthelmie RJ, Folkerts L, Rados K, Lange B& Schepers G. 2006 Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar. J. Atmos. Oceanic Technol. 23, 888–901.doi:10.1175/JTECH1886.1 (doi:10.1175/JTECH1886.1). Crossref, Web of ScienceGoogle Scholar