Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Restricted accessResearch article

Extreme rainfall, vulnerability and risk: a continental-scale assessment for South America

Charles J. Vörösmarty

Charles J. Vörösmarty

CUNY Environmental CrossRoads Initiative, City College of New York, New York, NY, USA

Department of Civil Engineering, City College of New York, New York, NY, USA

[email protected]

Google Scholar

Find this author on PubMed

,
Lelys Bravo de Guenni

Lelys Bravo de Guenni

Scientific Computing and Statistics, Universidad Simon Bolivar, Baruta, Miranda, Venezuela

Google Scholar

Find this author on PubMed

,
Wilfred M. Wollheim

Wilfred M. Wollheim

Natural Resources and Environment and Earth System Research Center, University of New Hampshire, Durham, NH, USA

Google Scholar

Find this author on PubMed

,
Brian Pellerin

Brian Pellerin

US Geological Survey, CA Water Science Center, Sacramento, CA, USA

Google Scholar

Find this author on PubMed

,
David Bjerklie

David Bjerklie

US Geological Survey, CT Water Science Center, East Hartford, CT, USA

Google Scholar

Find this author on PubMed

,
Manoel Cardoso

Manoel Cardoso

Center for Earth System Science, National Institute for Space Research (INPE), Cachoeira Paulista, São Paulo, Brazil

Google Scholar

Find this author on PubMed

,
Cassiano D'Almeida

Cassiano D'Almeida

National Council for Scientific and Technological Development (CNPq), Brasilia, Distrito Federal, Brazil

Google Scholar

Find this author on PubMed

,
Pamela Green

Pamela Green

CUNY Environmental CrossRoads Initiative, City College of New York, New York, NY, USA

Google Scholar

Find this author on PubMed

and
Lilybeth Colon

Lilybeth Colon

Department of Civil Engineering, City College of New York, New York, NY, USA

Google Scholar

Find this author on PubMed

Published:https://doi.org/10.1098/rsta.2012.0408

    Extreme weather continues to preoccupy society as a formidable public safety concern bearing huge economic costs. While attention has focused on global climate change and how it could intensify key elements of the water cycle such as precipitation and river discharge, it is the conjunction of geophysical and socioeconomic forces that shapes human sensitivity and risks to weather extremes. We demonstrate here the use of high-resolution geophysical and population datasets together with documentary reports of rainfall-induced damage across South America over a multi-decadal, retrospective time domain (1960–2000). We define and map extreme precipitation hazard, exposure, affectedpopulations, vulnerability and risk, and use these variables to analyse the impact of floods as a water security issue. Geospatial experiments uncover major sources of risk from natural climate variability and population growth, with change in climate extremes bearing a minor role. While rural populations display greatest relative sensitivity to extreme rainfall, urban settings show the highest rates of increasing risk. In the coming decades, rapid urbanization will make South American cities the focal point of future climate threats but also an opportunity for reducing vulnerability, protecting lives and sustaining economic development through both traditional and ecosystem-based disaster risk management systems.

    Footnotes

    One contribution of 16 to a Theme Issue ‘Water security, risk and society’.

    References

    • 1
      IFRC/RCS. 2011 World disasters report 2011: focus on hunger and malnutrition. Geneva, Switzerland: International Federation of the Red Cross and Red Crescent Societies. Google Scholar
    • 2
      Cooley H. 2006 Floods and droughts. In The world's water 2006-2007: The Biennial Report on Freshwater Resources (eds , Gleick PH, Wolff GH, Cooley H, Palaniappan M, Samulon A, Lee E, Morrison J& Katz D), ch. 4, pp. 91–116. Washington, DC: Island Press. Google Scholar
    • 3
      New M, Lopez A, Dessai S& Wilby R. 2007 Challenges in using probabilistic climate change information for impact assessments: an example from the water sector. Phil. Trans. R. Soc. A 365, 2117–2131. (doi:10.1098/rsta.2007.2080). Link, Web of ScienceGoogle Scholar
    • 4
      United Nations. 2005 Hyogo Framework for Action 2005–2015: building the resilience of nations and communities to disasters. Proc. World Conf. on Disaster Reduction, Kobe, Hyogo, Japan, 18–22 January 2005. See http://www.unisdr.org/wcdr/intergover/official-doc/L-docs/Hyogo-framework-for-actionenglish.pdf. Google Scholar
    • 5
      Pielke RA& Sarewitz D. 2005 Bringing society back into the climate debate. Popul. Environ. 26, 255–268. (doi:10.1007/s11111-005-1877-6). Crossref, Web of ScienceGoogle Scholar
    • 6
      United Nations. 2012 World urbanization prospects: the 2011 revision. UN publication ST/ESA/SER.A/313 and ST/ESA/SER.A/317. New York, NY: Department of Economic and Social Affairs/Population Division. CrossrefGoogle Scholar
    • 7
      Balk D, Montgomery MR& Liu Z. 2012 Urbanization and climate change hazards in Asia. Bangkok, Thailand: Asian Development Bank. Google Scholar
    • 8
      Intergovernmental Panel on Climate Change. 2007 In Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry ML, Canziani OF, Palutikof JP, van der Linden PJ& Hanson CE). Cambridge, UK: Cambridge University Press. CrossrefGoogle Scholar
    • 9
      Intergovernmental Panel on Climate Change. 2007 In Climate change 2007: synthesis report. Contribution ofWorking Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pachauri RK& Reisinger A). Geneva, Switzerland: IPCC. CrossrefGoogle Scholar
    • 10
      US Climate Change Science Program. 2008 Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and US Pacific Islands. In A Report by the US Climate Change Science Program and the Subcommittee on Global Change Research (eds Karl TR, et al.). Washington, DC: Department of Commerce, NOAA National Climatic Data Center. Google Scholar
    • 11
      Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP& Stouffer RJ. 2008 Stationarity is dead: whither water management?. Science 319, 573–574. (doi:10.1126/science.1151915). Crossref, PubMed, Web of ScienceGoogle Scholar
    • 12
      National Research Council Committee on Hydrological Science. 2011 Global change and extreme hydrology: testing conventional wisdom. National Research Council Committee on Hydrological Science, Water Science and Technology Board. Washington, DC: National Academy Press. Google Scholar
    • 13
      Huntington TG. 2006 Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol. 319, 83–95. (doi:10.1016/j.jhydrol.2005.07.003). Crossref, Web of ScienceGoogle Scholar
    • 14
      Huntington TG. 2010 Climate warming-induced intensification of the hydrologic cycle: a review of the published record and assessment of the potential impacts on agriculture. Adv. Agron. 109, 1–53. (doi:10.1016/B978-0-12-385040-9.00001-3). Crossref, Web of ScienceGoogle Scholar
    • 15
      Rawlins MA, et al.. 2010 Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J. Clim. 23, 5715–5737. (doi:10.1175/2010JCLI3421.1). Crossref, Web of ScienceGoogle Scholar
    • 16
      Karl TR, Melillo JM& Peterson TC (eds). 2009 Global climate change impacts in the United States. U.S. Global Change Research Program. Washington, DC: Cambridge University Press. Google Scholar
    • 17
      Karl TR& Trenberth KE. 2003 Modern global climate change. Science 302, 1719–1723. (doi:10.1126/science.1090228). Crossref, PubMed, Web of ScienceGoogle Scholar
    • 18
      Trenberth KE. 2011 Changes in precipitation with climate change. Clim. Res. 47, 123–138. (doi:10.3354/cr00953). Crossref, Web of ScienceGoogle Scholar
    • 19
      Trenberth KE. 1999 Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim. Change 42, 327–339. (doi:10.1023/A:1005488920935). Crossref, Web of ScienceGoogle Scholar
    • 20
      Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC& Razuvaev VAN. 2005 Trends in intense precipitation in the climate record. J. Clim. 18, 1326–1350. (doi:10.1175/JCLI3339.1). Crossref, Web of ScienceGoogle Scholar
    • 21
      Kharin VV, Zwiers FW, Zhang X& Hegerl GC. 2007 Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20, 1419–1444. (doi:10.1175/JCLI4066.1). Crossref, Web of ScienceGoogle Scholar
    • 22
      National Research Council. 2010 Advancing the science of climate change. In America's climate choices: panel on Advancing the Science of Climate Change, National Research Council. Washington, DC: The National Academies Press. Google Scholar
    • 23
      National Research Council. 2010 Adapting to the impacts of climate change. America's climate choices: panel on Advancing the Science of Climate Change, National Research Council. Washington, DC: The National Academies Press. Google Scholar
    • 24
      Svensson C, Hannaford J, Kundzewicz AW& Marsh TJ. 2006 Trends in river floods: why is there no clear signal in observations? In Frontiers in flood research (eds , Tchiguiinskaia I, Thein K& Hubert P). IAHS Publication 305: 1–18. Wallingford, UK: IAHS Press, ISBN 1-901502-63-5. Google Scholar
    • 25
      Janis MJ, Hubbard KG& Redmond KT. 2004 Station density strategy for monitoring long-term climatic change in the contiguous United States. J. Clim. 17, 151–162. (doi:10.1175/1520-0442(2004)017<0151:SDSFML>2.0.CO;2). Crossref, Web of ScienceGoogle Scholar
    • 26
      Pielke RA& Downton MW. 2000 Precipitation and damaging floods: trends in the United States, 1932–97. J. Climate 13, 3625–3637. Crossref, Web of ScienceGoogle Scholar
    • 27
      Willmott CJ& Robeson SM. 1995 Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol. 15, 221–229. (doi:10.1002/joc.3370150207). Crossref, Web of ScienceGoogle Scholar
    • 28
      Vörösmarty CJ& Sahagian D. 2000 Anthropogenic disturbance of the terrestrial water cycle. BioScience 50, 753–65. (doi:10.1641/0006-3568(2000)050[0753:ADOTTW]2.0.CO;2). Crossref, Web of ScienceGoogle Scholar
    • 29
      Vörösmarty CJ, et al.. 2010 Global threats to human water security and river biodiversity. Nature 467, 555–561. (doi:10.1038/nature09440). Crossref, PubMed, Web of ScienceGoogle Scholar
    • 30
      Lins HF& Slack JR. 1999 Streamflow trends in the United States. Geophys. Res. Lett. 26, 227–230. (doi:10.1029/1998GL900291). Crossref, Web of ScienceGoogle Scholar
    • 31
      Armstrong WH, Collins MJ& Snyder NP. 2012 Increased frequency of low-magnitude floods in New England. J. Am. Water Res. 48, 306–320. (doi:10.1111/j.1752-1688.2011.00613.x). Crossref, Web of ScienceGoogle Scholar
    • 32
      Karl TR& Knight RW. 1998 Secular trend of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 79, 231–242. (doi:10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2). Crossref, Web of ScienceGoogle Scholar
    • 33
      Van der Wink, et al.. 1998 Why the United States is becoming more vulnerable to natural disasters. Eos Trans. Am. Geophys. Union 79, 533–537. (doi:10.1029/98EO00390). CrossrefGoogle Scholar
    • 34
      Kunkel KE, Pielke RA& Changnon SA. 1999 Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull. Am. Meteorol. Soc. 80, 1077–1099. (doi:10.1175/1520-0477(1999)080<1077:TFIWAC>2.0.CO;2). Crossref, Web of ScienceGoogle Scholar
    • 35
      Cartwright L. 2005 An examination of flood damage data trends in the Unites States. J. Cont. Water Res. Educ. 130, 20–25. (doi:10.1111/j.1936-704X.2005.mp130001004.x). CrossrefGoogle Scholar
    • 36
      Bertoni JC. 2006 Urban floods in Latin America: reflections on the role of risk factors. Frontiers in flood research (eds , Tchiguiinskaia I, Thein K& Hubert P). IAHS Publication 305: 123–141. Wallingford, UK: IAHS Press, ISBN 1-901502-63-5. Google Scholar
    • 37
      Berkowitz B. 2012 Hurricane Sandy losses may be triple those of Irene. Reuters, 30 October 2012. See http://www.reuters.com/article/2012/10/30/us-storm-sandy-insurance-idUSBRE89T0WT20121030. Google Scholar
    • 38
      US Geological Survey. 2012 USGS continues response to Hurrican Sandy. USGS Science Features, 31 October 2012. See http://www.usgs.gov/blogs/features/usgs_top_story/sandy/. Google Scholar
    • 39
      US Geological Survey. 2012 Coastal change hazards: hurricanes and extreme storms—Hurricane Irene. USGS, St. Petersburg Coastal and Marine Science Center. See http://coastal.er.usgs.gov/hurricanes/irene/. Google Scholar
    • 40
      Marlin JT. 2012 Hurricane Sandy's Severity – #5, #6, or #8. The Huffington Post, 31 October 2012. See http://www.huffingtonpost.com/john-tepper-marlin/hurricane-sandy-severity_b_2047281.html. Google Scholar
    • 41
      Munich Re. 1998 World map of natural hazards. Munich, Germany: Munich Reinsurance Co. Google Scholar
    • 42
      Freeman P& Warner K. 2001 Vulnerability of infrastructure to climate variability: how does this affect infrastructure lending policies? Report Commissioned by the Disaster Management Facility of the World Bank and the ProVention Consortium. Washington, DC: The World Bank. Google Scholar
    • 43
      United Nations Development Programme. 2011 Human Development Report 2011. Sustainability and equity: a better future for all. New York, NY: Macmillan. CrossrefGoogle Scholar
    • 44
      United Nations International Strategy for Disaster Reduction. 2011 Revealing risk, redefining development. Global Assessment Report on Disaster Risk Reduction. Geneva, Switzerland: UNISDR. Google Scholar
    • 45
      Colon L. 2013 Sources of Societal Vulnerability to Extreme Weather. 226 pp. Google Scholar
    • 46
      Kates RW, et al.. 2001 Sustainability science. Science 292, 641–642. (doi:10.1126/science.1059386). Crossref, PubMed, Web of ScienceGoogle Scholar
    • 47
      Downing TE, Olsthrom AJ& Tol RSJ. 1999 Climate change and risk. London, UK: Routledge. Google Scholar
    • 48
      Lawford R, Herland E& Nakamura K. 2004 A global water cycle theme for the IGOS Partnership. Report of the Global Water Cycle Theme Team, Integrated Global Observing Strategy (IGOS). European Space Agency, Noordwjk, The Netherlands: ESA Publications. Google Scholar
    • 49
      Brakenridge GR, Nghiem SV, Anderson E& Chien S. 2005 Space-based measurement of river runoff. Eos Trans. Am. Geophys. Union. 88, 185–188. (doi:10.1029/2005EO190001). CrossrefGoogle Scholar
    • 50
      Liverman D, Moran EF, Rindfuss RR& Stern PC (eds). 1998 People and pixels: linking remote sensing and social science. In Committee on Human Dimensions of Global Change, National Research Council. Washington, DC: National Academy Press. Google Scholar
    • 51
      US Global Change Research Program, Water Cycle Study Group. 2001 A plan for a new science initiative on the global water cycle. Report to the US Global Change Research Program. See http://www.usgcrp.gov/usgcrp/Library/watercycle/wcsgreport2001/default.htm. Google Scholar
    • 52
      Lorenzoni I, Jordan A, Hulme M, Turner RK& O’Riordan T. 2000 A co-evolutionary approach to climate change impact assessment: part I. Integrating socio-economic and climate change scenarios. Glob. Environ. Change 10, 57–68. (doi:10.1016/S0959-3780(00)00012-1). Crossref, Web of ScienceGoogle Scholar
    • 53
      Luers AL, Lobell DB, Sklard LS, Lee Addams C& Matson PA. 2003 A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob. Environ. Change 13, 255–267. (doi:10.1016/S0959-3780(03)00054-2). Crossref, Web of ScienceGoogle Scholar
    • 54
      Pielke RA& Bravo de Guenni L (eds). 2004 How to evaluate vulnerability in changing environmental conditions. Vegetation, water, humans and the climate (eds , Kabat P, et al.), pp. 483–544. Heidelberg, Germany: Springer. CrossrefGoogle Scholar
    • 55
      Dilley M, Chen RS, Deichmann U, Lerner-Lam AL& Arnold M. 2005 Natural disaster hotspots: a global risk analysis. Washington, DC: The World Bank. CrossrefGoogle Scholar
    • 56
      Birkmann J. 2005 Measuring vulnerability to promote disaster-resilient societies: conceptual frameworks and definitions. Measuring vulnerability to natural hazards: towards disaster resilient societies (ed & Birkmann J), ch. 1, pp. 9–54. Tokyo, Japan: United Nations University. Google Scholar
    • 57
      Cutter SL. 1996 Vulnerability to environmental hazards. Progr. Hum. Geogr. 20, 529–539. (doi:10.1177/030913259602000407). Crossref, Web of ScienceGoogle Scholar
    • 58
      Downing TE, Butterfield R, Cohen S, Hug S, Moss R, Rahman A, Sokona Y& Stephan L. 2001 Climate change vulnerability: linking impacts and adaptation. Oxford, UK: UNEP, Nairobi/Environmental Change Institute. Google Scholar
    • 59
      Kumpulainen S. 2006 Vulnerability concepts in hazard and risk assessment. Natural and technological hazards and risks affecting the spatial development of European regions. Geol. Surv. Finl. 42, 65–74. Google Scholar
    • 60
      United Nations International Strategy for Disaster Reduction. 2009 Geneva, Switzerland: United Nations. Google Scholar
    • 61
      Harmeling S. 2010 Global climate risk index 2010. Who is most vulnerable? Weather-related loss events since 1990 and how Copenhagen needs to respond. Bonn, Germany: Germanwatch. Google Scholar
    • 62
      Cutter SL& Emrich C. 2005 Are natural hazards and disaster losses in the US increasing?. Eos Trans. Am. Geophys. Union 86, 381–389. (doi:10.1029/2005EO410001). CrossrefGoogle Scholar
    • 63
      Pielke RA& Stohlgren TJ. 2004 Contrast between predictive and vulnerability approaches. Vegetation, water, humans and the climate (eds , Kabat P, et al.), pp. 491–495. Heidelberg, Germany: Springer. CrossrefGoogle Scholar
    • 64
      Van Noortwijk JM, Kok K& Cooke RM. 1997 Optimal decisions that reduce flood damage along the Meuse: an uncertainty analysis. The practice of Bayesian analysis (eds , French S& Smith JQ), pp. 151–172. London, UK: Arnold. Google Scholar
    • 65
      Blaikie P, Wisner B, Davis I& Cannon T. 2004 At risk—natural hazards, people‘s vulnerability and disasters. Abingdon, UK: Routledge. Google Scholar
    • 66
      Mitchell TD, Carter TR, Jones PD, Hulme M& New M. 2004 A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Google Scholar
    • 67
      Vörösmarty CJ, Green P, Salisbury J& Lammers R. 2000 Global water resources: vulnerability from climate change and population growth. Science 289, 284–288. (doi:10.1126/science.289.5477.284). Crossref, PubMed, Web of ScienceGoogle Scholar
    • 68
      Fekete BM, Vörösmarty CJ& Lammers RB. 2001 Scaling gridded river networks for macroscale hydrology: development, analysis, and control of error. Water Resour. Res. 37, 1955–1967. (doi:10.1029/2001WR900024). Crossref, Web of ScienceGoogle Scholar
    • 69
      Dilley M. 2006 Setting priorities: global patterns of disaster risk. Phil. Trans. R. Soc. A 364, 2217–2229. (doi:10.1098/rsta.2006.1823). Link, Web of ScienceGoogle Scholar
    • 70
      Integracao. 2013 Sistema Integrado de Informacoes sobre Desastres—S2ID. See http://s2id.integracao.gov.br. Google Scholar
    • 71
      Hannah DM, Demuth S, Van Lanen HAJ, Looser U, Prudhomme C, Rees G, Stahl K& Tallaksen LM. 2011 Large-scale river flow archives: importance, current status and future needs. Comment. Hydrol. Proc. 25, 1191–1200. (doi:10.1002/hyp.7794). Crossref, Web of ScienceGoogle Scholar
    • 72
      United Nations Development Programme. 2004 Reducing disaster risk: a challenge for development. New York, NY: United Nations Development Programme, Bureau for Crisis Prevention and Recovery. Google Scholar
    • 73
      Neumayer E& Barthel F. 2011 Normalizing economic loss from natural disasters: a global analysis. Glob. Environ. Change 21, 13–24. (doi:10.1016/j.gloenvcha.2010.10.004). Crossref, Web of ScienceGoogle Scholar
    • 74
      Charveriat C. 2000 Natural disasters in Latin America and the Caribbean: an overview of risk. Working Paper No. 434, Washington, DC: Research Department, Inter-American Development Bank. Google Scholar
    • 75
      Maynard-Ford MC, Phillips EC& Chirico PG. 2008 Mapping vulnerability to disasters in Latin America and the Caribbean, 1900–2007. USGS Open-File Report 2008–1294, available online at http://pubs.usgs.gov/of/2008/1294. US Geological Survey, Reston, Virginia, 30 pp. Google Scholar
    • 76
      Vera C& Silvestri G. 2009 Precipitation interannual variability in South America from the WCRP-CMIP3 multi-model dataset. Clim. Dyn. 32, 1003–1014. (doi:10.1007/s00382-009-0534-7). Crossref, Web of ScienceGoogle Scholar
    • 77
      Randerson JT, et al.. 2009 Systemic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob. Change Biol. 15, 2462–2484. (doi:10.1111/j.1365-2486.2009.01912.x). Crossref, Web of ScienceGoogle Scholar
    • 78
      Vos F, Alcamo J, Arnell N, Haddeland I, Hagemann S, Lammers R, Oki T, Hanasaki N& Kim H. 2008 First results from intercomparison of surface water availability modules. Google Scholar
    • 79
      McKinsey & Company. 2009 Charting our water future: economic frameworks to inform decision-making. 2030 Water Resources Group, Washington, DC. Google Scholar
    • 80
      Zhang J& Liu Z. 2006 Hydrological monitoring and flood management in China. Frontiers in flood research (eds , Tchiguiinskaia I, Thein K& Hubert P). IAHS Publication 305: 93–101. Wallingford, UK: IAHS Press, ISBN 1-901502-63-5. Google Scholar
    • 81
      UNECLAC. 2002 Handbook for estimating socio-economic and environmental effects of disasters. LC/MEX/L.519. Santiago, Chile: United Nations Economic Commission for Latin America and the Caribbean. Google Scholar
    • 82
      Cemaden. 2013 Centro Nacional de Monitoramento e Alertas de Desastres Naturais (CEMADEN). See www.cemaden.gov.br. Google Scholar
    • 83
      Bravo de Guenni L, Hernandez JR, Llatas I& Salcedo A. 2010 Desarrollo de un Sistema de Alerta Temprana comunitario en el estado Vargas, Venezuela. Temas de Conyuntura 6, 169–178. Google Scholar
    • 84
      World Water Assessment Programme. 2009 Water in a changing world. World Water Assessment Programme, The United Nations World Water Development Report 3. Paris, France: UNESCO. Google Scholar
    • 85
      USACE-IWR. 2000 Civil works floodplain management initiatives: value to the nation. Washington, DC: US Army Corps of Engineers, Institute for Water Resources. Google Scholar
    • 86
      Gleick PH. 2003 Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528. (doi:10.1126/science.1089967). Crossref, PubMed, Web of ScienceGoogle Scholar
    • 87
      WCD. 2000 Dams and development final report. London, UK: World Commission on Dams. Google Scholar
    • 88
      MEA. 2005 Ecosystems and human well-being: synthesis. Millennium Ecosystem Assessment, World Resources Institute. Washington, DC: Island Press. Google Scholar
    • 89
      Palmer MA. 2010 Beyond infrastructure. Nature 467, 534–535. (doi:10.1038/467534a). Crossref, PubMed, Web of ScienceGoogle Scholar
    • 90
      Hawley K, Moench M& Sabbag L. 2012 Understanding the economics of flood risk reduction: a preliminary analysis. Boulder, CO: Institute for Social and Environmental Transition. Google Scholar
    • 91
      McGranahan G, et al.. 2005 Urban systems. Millennium ecosystem assessment, current state and trends working group, ch.27, pp. 795–825, 881. Ecosystems and Human Well-being, vol. 1. Washington, DC: Island Press. Google Scholar
    • 92
      UN-HABITAT. 2011 Cities and climate change: global report on human settlements 2011. United Nations Human Settlements Programme. London, UK: Earthscan. CrossrefGoogle Scholar
    • 93
      United Nations Development Programme. 2004 Reducing disaster risk: a challenge for development. New York, NY: United Nations Development Programme, Bureau for Crisis Prevention and Recovery, John S Swift Co. Google Scholar