Abstract
Quantifying the strength and efficiency of the Southern Ocean biological carbon pump (BCP) and its response to predicted changes in the Earth's climate is fundamental to our ability to predict long-term changes in the global carbon cycle and, by extension, the impact of continued anthropogenic perturbation of atmospheric CO2. There is little agreement, however, in climate model projections of the sensitivity of the Southern Ocean BCP to climate change, with a lack of consensus in even the direction of predicted change, highlighting a gap in our understanding of a major planetary carbon flux. In this review, we summarize relevant research that highlights the important role of fine-scale dynamics (both temporal and spatial) that link physical forcing mechanisms to biogeochemical responses that impact the characteristics of the seasonal cycle of phytoplankton and by extension the BCP. This approach highlights the potential for integrating autonomous and remote sensing observations of fine scale dynamics to derive regionally optimized biogeochemical parameterizations for Southern Ocean models. Ongoing development in both the observational and modelling fields will generate new insights into Southern Ocean ecosystem function for improved predictions of the sensitivity of the Southern Ocean BCP to climate change.
This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.
Footnotes
References
- 1.
DeVries T, Holzer M, Primeau F . 2017 Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature 542, 215-218. (doi:10.1038/nature21068) Crossref, PubMed, Web of Science, Google Scholar - 2.
Friedlingstein P et al. 2019 Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783-1838. (doi:10.5194/essd-11-1783-2019) Crossref, Web of Science, Google Scholar - 3.
Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M . 2015 Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J. Clim. 28, 862-886. (doi:10.1175/JCLI-D-14-00117.1) Crossref, Web of Science, Google Scholar - 4.
Lenton A et al. 2013 Sea–air CO2 fluxes in the Southern Ocean for the period 1990–2009. Biogeosciences 10, 4037-4054. (doi:10.5194/bg-10-4037-2013) Crossref, Web of Science, Google Scholar - 5.
Takahashi T et al. 2009 Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. II 56, 554-577. (doi:10.1016/j.dsr2.2008.12.009) Crossref, Web of Science, Google Scholar - 6.
Hauck J, Lenton A, Langlais C, Matear R . 2018 The fate of carbon and nutrients exported out of the Southern Ocean. Global Biogeochem. Cycles 32, 1556-1573. (doi:10.1029/2018GB005977) Crossref, Web of Science, Google Scholar - 7.
Schlitzer R . 2002 Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep Sea Res. Part II 49, 1623-1644. (doi:10.1016/S0967-0645(02)00004-8) Crossref, Web of Science, Google Scholar - 8.
Mikaloff Fletcher SE et al. 2007 Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochem. Cycles 21, 1-19. (doi:10.1029/2006GB002751) Crossref, Web of Science, Google Scholar - 9.
Gruber N et al. 2009 Oceanic sources, sinks, and transport of atmospheric CO2. Global Biogeochem. Cycles 23, GB1005. (doi:10.1029/2008GB003349) Crossref, Web of Science, Google Scholar - 10.
Bopp L et al. 2013 Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225-6245. (doi:10.5194/bg-10-6225-2013) Crossref, Web of Science, Google Scholar - 11.
Boyd PW, Lennartz ST, Glover DM, Doney SC . 2015 Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat. Clim. Change 5, 71-79. (doi:10.1038/nclimate2441) Crossref, Web of Science, Google Scholar - 12.
Kwiatkowski L et al. 2020 Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439-3470. (doi:10.5194/bg-17-3439-2020) Crossref, Web of Science, Google Scholar - 13.
Henson SA, Sanders R, Madsen E, Morris PJ, Le Moigne F, Quartly GD . 2011 A reduced estimate of the strength of the ocean's biological carbon pump. Geophys. Res. Lett. 38, 1-5. (doi:10.1029/2011GL046735) Crossref, Web of Science, Google Scholar - 14.
Palter JB, Sarmiento JL, Gnanadesikan A, Simeon J, Slater RD . 2010 Fueling export production: nutrient return pathways from the deep ocean and their dependence on the meridional overturning circulation. Biogeosciences 7, 3549-3568. (doi:10.5194/bg-7-3549-2010) Crossref, Web of Science, Google Scholar - 15.
Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP . 2004 High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56-60. (doi:10.1038/nature02127) Crossref, PubMed, Web of Science, Google Scholar - 16.
Sigman DM, Boyle EA . 2000 Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859-869. (doi:10.1038/35038000) Crossref, PubMed, Web of Science, Google Scholar - 17.
Hauck J et al. 2015 On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century. Global Biogeochem. Cycles 29, 1451-1470. (doi:10.1002/2015GB005140) Crossref, Web of Science, Google Scholar - 18.
Krishnamurthy A, Moore JK, Mahowald N, Luo C, Doney SC, Lindsay K, Zender CS . 2009 Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry. Global Biogeochem. Cycles 23. GB3016. (doi:10.1029/2008GB003440) Crossref, Web of Science, Google Scholar - 19.
Barnes DKA . 2018 Blue carbon on polar and subpolar seabeds. In Carbon capture, utilization and sequestration (ed.Agarwal RK ), Rijeka: IntechOpen. Google Scholar - 20.
Henley SF et al. 2020 Changing biogeochemistry of the southern ocean and its ecosystem implications. Front. Mar. Sci. 7, 581. (doi:10.3389/fmars.2020.00581) Crossref, Web of Science, Google Scholar - 21.
Morley SA et al. 2020 Global drivers on southern ocean ecosystems: changing physical environments and anthropogenic pressures in an earth system. Front. Mar. Sci. 7, 547188. (doi:10.3389/fmars.2020.547188) Crossref, Web of Science, Google Scholar - 22.
Auger M, Morrow R, Kestenare E, Sallée J-B, Cowley R . 2021 Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability. Nat. Commun. 12, 514. (doi:10.1038/s41467-020-20781-1) Crossref, PubMed, Web of Science, Google Scholar - 23.
Haumann FA, Gruber N, Münnich M . 2020 Sea-ice induced southern ocean subsurface warming and surface cooling in a warming climate. AGU Adv. 1, e2019AV000132. (doi:10.1029/2019AV000132) Crossref, Google Scholar - 24.
Sallée J-B, Pellichero V, Akhoudas C, Pauthenet E, Vignes L, Schmidtko S, Garabato AN, Sutherland P, Kuusela M . 2021 Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592-598. (doi:10.1038/s41586-021-03303-x) Crossref, PubMed, Web of Science, Google Scholar - 25.
Swart NC, Fyfe JC, Saenko OA, Eby M . 2014 Wind-driven changes in the ocean carbon sink. Biogeosciences 11, 6107-6117. (doi:10.5194/bg-11-6107-2014) Crossref, Web of Science, Google Scholar - 26.
Laufkötter C, John JG, Stock CA, Dunne JP . 2017 Temperature and oxygen dependence of the remineralization of organic matter. Global Biogeochem. Cycles 31, 1038-1050. (doi:10.1002/2017GB005643) Crossref, Web of Science, Google Scholar - 27.
Henson SA, Laufkötter C, Leung S, Giering SLC, Palevsky HI, Cavan EL . 2022 Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248-254. (doi:10.1038/s41561-022-00927-0) Crossref, Web of Science, Google Scholar - 28. IPCC. 2021 Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press. Google Scholar
- 29.
Thomalla SJ, Fauchereau N, Swart S, Monteiro PMS . 2011 Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean. Biogeosciences 8, 2849-2866. (doi:10.5194/bg-8-2849-2011) Crossref, Web of Science, Google Scholar - 30.
Swart S, Thomalla SJ, Monteiro PMS . 2015 The seasonal cycle of mixed layer dynamics and phytoplankton biomass in the Sub-Antarctic Zone: a high-resolution glider experiment.J. Mar. Sys. 147, 103-115. (doi:10.1016/j.jmarsys.2014.06.002) Crossref, Web of Science, Google Scholar - 31.
Thomalla SJ, Racault M, Swart S, Monteiro PMS . 2015 High-resolution view of the spring bloom initiation and net community production in the Subantarctic Southern Ocean using glider data. ICES J. Mar. Sci. 72, 1999-2020. (doi:10.1093/ICESJMS/FSV105) Crossref, Web of Science, Google Scholar - 32.
Monteiro PMS, Boyd P, Bellerby R . 2011 Role of the seasonal cycle in coupling climate and carbon cycling in the Subantarctic zone. Eos, Trans. Am. Geophys. Union 92, 235-236. (doi:10.1029/2011EO280007) Crossref, Google Scholar - 33.
Carranza MM, Gille ST, Franks PJS, Johnson KS, Pinkel R, Girton JB . 2018 When mixed layers are not mixed. Storm-Driven mixing and bio-optical vertical gradients in mixed layers of the Southern Ocean. J. Geophys. Res. Oceans 123, 7264-7289. (doi:10.1029/2018JC014416) Crossref, Google Scholar - 34.
Henson SA, Cole HS, Hopkins J, Martin AP, Yool A . 2018 Detection of climate change-driven trends in phytoplankton phenology. Global Change Biol. 24, e101-e111. (doi:10.1111/gcb.13886) Crossref, PubMed, Web of Science, Google Scholar - 35.
Cox PM . 2019 Emergent constraints on climate-carbon cycle feedbacks. Curr. Clim. Change Rep. 5, 275-281. (doi:10.1007/S40641-019-00141-Y) Crossref, PubMed, Web of Science, Google Scholar - 36.
Boyd PW . 2002 Environmental factors controlling phytoplankton processes in the Southern Ocean. J. Phycol. 38, 844-861. (doi:10.1046/j.1529-8817.2002.t01-1-01203.x) Crossref, Web of Science, Google Scholar - 37.
Boyd P, LaRoche J, Gall M, Frew R, McKay RML . 1999 Role of iron, light, and silicate in controlling algal biomass in Subantarctic waters SE of New Zealand. J. Geophys. Res. Oceans 104, 13 395-13 408. (doi:10.1029/1999JC900009) Crossref, Google Scholar - 38.
Franck VM, Brzezinski MA, Coale KH, Nelson DM . 2000 Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep Sea Res. Part II 47, 3315-3338. (doi:10.1016/S0967-0645(00)00070-9) Crossref, Web of Science, Google Scholar - 39.
Nelson DM, Brzezinski MA, Sigmon DE, Franck VM . 2001 A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep Sea Res. Part II 48, 3973-3995. (doi:10.1016/S0967-0645(01)00076-5) Crossref, Web of Science, Google Scholar - 40.
Tortell PD, DiTullio GR, Sigman DM, Morel FMM . 2002 CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar. Ecol. Prog. Ser. 236, 37-43. (doi:10.3354/meps236037) Crossref, Web of Science, Google Scholar - 41.
Klein P, Lapeyre G . 2009 The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci. 1, 351-375. (doi:10.1146/annurev.marine.010908.163704) Crossref, PubMed, Web of Science, Google Scholar - 42.
McGillicuddy DJ, Anderson LA, Doney SC, Maltrud ME . 2003 Eddy-driven sources and sinks of nutrients in the upper ocean: results from a 0.1 degrees resolution model of the North Atlantic. Global Biogeochem. Cycles 17, 1035. (doi:10.1029/2002gb001987) Crossref, Web of Science, Google Scholar - 43.
McGillicuddy DJ et al. 2007 Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science (1979) 316, 1021-1026. (doi:10.1126/science.1136256) Crossref, PubMed, Web of Science, Google Scholar - 44.
Jenkins WJ . 1988 Nitrate flux into the euphotic zone near Bermuda. Nature 331, 521-523. (doi:10.1038/331521a0) Crossref, Web of Science, Google Scholar - 45.
Ferrari R, Wunsch C . 2008 Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41, 253-282. (doi:10.1146/annurev.fluid.40.111406.102139) Crossref, Web of Science, Google Scholar - 46.
Lévy M, Klein P, Treguier AM . 2001 Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res. 59, 535-565. (https://archimer.ifremer.fr/doc/2001/publication-800.pdf) Crossref, Web of Science, Google Scholar - 47.
Glover DM, Doney SC, Nelson NB, Wallis A . 2008 Sub-mesoscale anisotropy (fronts, eddies, and filaments) as observed near Bermuda with ocean color data. Paper presented at: 2008 Ocean Sciences Meeting. InProc. of the 2008 Ocean Sciences Meeting, Orlando, FL, 2–7 March 2008 , pp. 2–7. Washington, DC: AGU. Google Scholar - 48.
Lévy M, Klein P, ben Jelloul M . 2009 New production stimulated by high-frequency winds in a turbulent mesoscale eddy field. Geophys. Res. Lett. 36, 1-5. (doi:10.1029/2009GL039490) Crossref, Web of Science, Google Scholar - 49.
Mahadevan A, D'Asaro E, Lee C, Perry MJ . 2012 Eddy-driven stratification initiates north Atlantic spring phytoplankton blooms. Science (1979) 337, 54 LP-54 58. (doi:10.1126/science.1218740) Web of Science, Google Scholar - 50.
Swart S et al. 2023 The Southern Ocean mixed layer and its boundary fluxes: fine-scale observational progress and future research priorities. Phil. Trans R. Soc. A 381, 20220058. (doi:10.1098/rsta.2022.0058) Abstract, Google Scholar - 51.
Sathyendranath S et al. 2019 An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (OC-CCI). Sensors 19, 4285. (doi:10.3390/s19194285) Crossref, Web of Science, Google Scholar - 52.
Fauchereau N, Tagliabue A, Bopp L, Monteiro PMS . 2011 The response of phytoplankton biomass to transient mixing events in the Southern Ocean. Geophys. Res. Lett. 38, 1-6. (doi:10.1029/2011GL048498) Crossref, Web of Science, Google Scholar - 53.
Joubert WR, Swart S, Tagliabue A, Thomalla SJ, Monteiro PMS . 2014 The sensitivity of primary productivity to intra-seasonal mixed layer variability in the sub-Antarctic Zone of the Atlantic Ocean. Biogeosci. Dis. 11, 4335-4358. (doi:10.5194/bgd-11-4335-2014) Google Scholar - 54.
Carranza MM, Gille ST . 2015 Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer. J. Geophys. Res. Oceans 120, 304-323. (doi:10.1002/2014JC010203) Crossref, Google Scholar - 55.
Little HJ, Vichi M, Thomalla SJ, Swart S . 2018 Spatial and temporal scales of chlorophyll variability using high-resolution glider data. J. Mar. Sys. 187, 1-12. (https://www.sciencedirect.com/science/article/abs/pii/S0924796317304530) Crossref, Web of Science, Google Scholar - 56.
Taylor JR, Ferrari R . 2011 Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms. Limnol. Oceanogr. 56, 2293-2307. (doi:10.4319/lo.2011.56.6.2293) Crossref, Web of Science, Google Scholar - 57.
Chiswell SM . 2011 Annual cycles and spring blooms in phytoplankton: don't abandon Sverdrup completely. Mar. Ecol. Prog. Ser. 443, 39-50. (doi:10.3354/meps09453) Crossref, Web of Science, Google Scholar - 58.
Chiswell SM, Bradford-Grieve J, Hadfield MG, Kennan SC . 2013 Climatology of surface chlorophyll a, autumn-winter and spring blooms in the southwest Pacific Ocean. J. Geophys. Res. Oceans 118, 1003-1018. (doi:10.1002/jgrc.20088) Crossref, Google Scholar - 59.
du Plessis M, Swart S, Ansorge IJ, Mahadevan A . 2017 Submesoscale processes promote seasonal restratification in the Subantarctic Ocean. J. Geophys. Res. Oceans 122, 2960-2975. (doi:10.1002/2016JC012494) Crossref, Google Scholar - 60.
du Plessis M, Swart S, Ansorge IJ, Mahadevan A, Thompson AF . 2019 Southern Ocean seasonal restratification delayed by submesoscale wind–front interactions. J. Phys. Oceanogr. 49, 1035-1053. (doi:10.1175/JPO-D-18-0136.1) Crossref, Web of Science, Google Scholar - 61.
Mahadevan A, Tandon A, Ferrari R . 2010 Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res. Oceans 115, C03017. (doi:10.1029/2008JC005203) Crossref, Google Scholar - 62.
Cassar N et al. 2011 The influence of iron and light on net community production in the Subantarctic and polar frontal zones. Biogeosciences 8, 227-237. (doi:10.5194/bg-8-227-2011) Crossref, Web of Science, Google Scholar - 63.
Ryan-Keogh TJ, Thomalla SJ . 2020 Deriving a proxy for iron limitation from chlorophyll fluorescence on buoyancy gliders. Front. Mar. Sci. 7, 275. (doi:10.3389/fmars.2020.00275) Crossref, Web of Science, Google Scholar - 64.
van Leeuwe MA, Stefels J . 2007 Photosynthetic responses in Phaeocystis Antarctica towards varying light and iron conditions. Biogeochemistry 83, 61-70. (doi:10.1007/s10533-007-9083-5) Crossref, Web of Science, Google Scholar - 65.
Ryan-Keogh TJ, Thomalla SJ, Mtshali TN, van Horsten NR, Little HJ . 2018 Seasonal development of iron limitation in the sub-Antarctic zone. Biogeosciences 15, 4647-4660. (doi:10.5194/bg-15-4647-2018) Crossref, Web of Science, Google Scholar - 66.
Alkire MB et al. 2012 Estimates of net community production and export using high-resolution, Lagrangian measurements of O2, NO3−, and POC through the evolution of a spring diatom bloom in the North Atlantic. Deep Sea Res. Part I 64, 157-174. (doi:10.1016/j.dsr.2012.01.012) Crossref, Google Scholar - 67.
Plant JN, Johnson KS, Sakamoto CM, Jannasch HW, Coletti LJ, Riser SC, Swift DD . 2016 Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats. Global Biogeochem. Cycles 30, 859-879. (doi:10.1002/2015GB005349) Crossref, Web of Science, Google Scholar - 68.
Dall'Olmo G, Mork KA . 2014 Carbon export by small particles in the Norwegian Sea. Geophys. Res. Lett. 41, 2921-2927. (doi:10.1002/2014GL059244) Crossref, Web of Science, Google Scholar - 69.
Boss E, Behrenfeld M . 2010 In situ evaluation of the initiation of the North Atlantic phytoplankton bloom. Geophys. Res. Lett. 37, L18603. (doi:10.1029/2010GL044174) Crossref, Web of Science, Google Scholar - 70.
Li Z, Lozier MS, Cassar N . 2021 Linking Southern Ocean mixed-layer dynamics to net community production on various timescales. J. Geophys. Res. Oceans 126, e2021JC017537. (doi:10.1029/2021JC017537) Crossref, Google Scholar - 71.
Llort J, Lévy M, Sallée JB, Tagliabue A . 2019 Nonmonotonic response of primary production and export to changes in mixed-layer depth in the Southern Ocean. Geophys. Res. Lett. 46, 3368-3377. (doi:10.1029/2018GL081788) Crossref, Web of Science, Google Scholar - 72.
Tagliabue A, Sallée JB, Bowie AR, Lévy M, Swart S, Boyd PW . 2014 Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nat. Geosci. 7, 314-320. (doi:10.1038/ngeo2101) Crossref, Web of Science, Google Scholar - 73.
Giddy I, Nicholson S, Queste BY, Thomalla S, Swart S . 2011 Sea-ice impacts inter-annual variability in phytoplankton phenology and carbon export in the Weddell Sea. Geophys. Res. Lett. 38. (doi:10.1002/essoar.10508727.1) Google Scholar - 74.
Prend CJ, Keerthi MG, Lévy M, Aumont O, Gille ST, Talley LD . 2022 Sub-seasonal forcing drives year-to-year variations of southern ocean primary productivity. Global Biogeochem. Cycles 36, e2022GB007329. (doi:10.1029/2022GB007329) Crossref, Web of Science, Google Scholar - 75.
Trull TW, Jansen P, Schulz E, Weeding B, Davies DM, Bray SG . 2019 Autonomous multi-trophic observations of productivity and export at the Australian Southern Ocean Time Series (SOTS) reveal sequential mechanisms of physical-biological coupling. Front. Mar. Sci. 6, 525. (doi:10.3389/fmars.2019.00525) Crossref, Web of Science, Google Scholar - 76.
Trull TW, Bray SG, Manganini SJ, Honjo S, François R . 2001 Moored sediment trap measurements of carbon export in the Subantarctic and polar frontal zones of the Southern Ocean, south of Australia. J. Geophys. Res. Oceans 106, 31 489-31 509. (doi:10.1029/2000JC000308) Crossref, Google Scholar - 77.
Weeding B, Trull TW . 2014 Hourly oxygen and total gas tension measurements at the Southern Ocean time series site reveal winter ventilation and spring net community production. J. Geophys. Res. Oceans 119, 348-358. (doi:10.1002/2013JC009302) Crossref, Google Scholar - 78.
Shadwick EH, Tilbrook B, Cassar N, Trull TW, Rintoul SR . 2015 Summertime physical and biological controls on O2 and CO2 in the Australian sector of the Southern Ocean. J. Mar. Sys. 147, 21-28. (doi:10.1016/j.jmarsys.2013.12.008) Crossref, Web of Science, Google Scholar - 79.
Schallenberg C, Harley JW, Jansen P, Davies DM, Trull TW . 2019 Multi-year observations of fluorescence and backscatter at the Southern Ocean time series (SOTS) shed light on two distinct seasonal bio-optical regimes. Front. Mar. Sci. 6, 595. (doi:10.3389/fmars.2019.00595) Crossref, Web of Science, Google Scholar - 80.
van der Merwe P, Trull TW, Goodwin T, Jansen P, Bowie A . 2019 The autonomous clean environmental (ACE) sampler: a trace-metal clean seawater sampler suitable for open-ocean time-series applications. Limnol. Oceanogr. Methods 17, 490-504. (doi:10.1002/lom3.10327) Crossref, Web of Science, Google Scholar - 81.
Schallenberg C, Strzepek RF, Schuback N, Clementson LA, Boyd PW, Trull TW . 2020 Diel quenching of Southern Ocean phytoplankton fluorescence is related to iron limitation. Biogeosciences 17, 793-812. (doi:10.5194/bg-17-793-2020) Crossref, Web of Science, Google Scholar - 82.
Su Z, Wang J, Klein P, Thompson AF, Menemenlis D . 2018 Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 9, 775. (doi:10.1038/s41467-018-02983-w) Crossref, PubMed, Web of Science, Google Scholar - 83.
Hewitt H, Fox-Kemper B, Pearson B, Roberts M, Klocke D . 2022 The small scales of the ocean may hold the key to surprises. Nat. Clim. Change 12, 496-499. (doi:10.1038/s41558-022-01386-6) Crossref, Web of Science, Google Scholar - 84.
Patoux J, Yuan X, Li C . 2009 Satellite-based midlatitude cyclone statistics over the Southern Ocean: 1. Scatterometer-derived pressure fields and storm tracking. J. Geophys. Res. Atmos. 114, D04105. (doi:10.1029/2008JD010873) Crossref, Google Scholar - 85.
Yuan X . 2004 High-wind-speed evaluation in the Southern Ocean. J. Geophys. Res. Atmos. 109, 1-10. (doi:10.1029/2003JD004179) Crossref, Google Scholar - 86.
Monteiro PMS, Gregor L, Lévy M, Maenner S, Sabine CL, Swart S . 2015 Intraseasonal variability linked to sampling alias in air-sea CO2 fluxes in the Southern Ocean. Geophys. Res. Lett. 42, 8507-8514. (doi:10.1002/2015GL066009) Crossref, Web of Science, Google Scholar - 87.
Hales B, Takahashi T . 2004 High-resolution biogeochemical investigation of the Ross Sea, Antarctica, during the AESOPS (U. S. JGOFS) Program. Global Biogeochem. Cycles 18, 1-24. (doi:10.1029/2003GB002165) Crossref, Web of Science, Google Scholar - 88.
Kaufman DE, Friedrichs MAM, Hemmings JCP, Smith WO . 2018 Assimilating bio-optical glider data during a phytoplankton bloom in the southern Ross Sea. Biogeosciences 15, 73-90. (doi:10.5194/bg-15-73-2018) Crossref, Web of Science, Google Scholar - 89.
Martin JH, Knauer GA, Karl DM, Broenkow WW . 1987 VERTEX: carbon cycling in the northeast Pacific. Deep Sea Research Part A. Oceanogr. Res. Papers 34, 267-285. (doi:10.1016/0198-0149(87)90086-0) Crossref, Web of Science, Google Scholar - 90.
Steinberg DK, van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM . 2008 Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone. Limnol. Oceanogr. 53, 1327-1338. (doi:10.4319/lo.2008.53.4.1327) Crossref, Web of Science, Google Scholar - 91.
Giering SLC et al. 2014 Reconciliation of the carbon budget in the ocean's twilight zone. Nature 507, 480-483. (doi:10.1038/nature13123) Crossref, PubMed, Web of Science, Google Scholar - 92.
Cavan EL, le Moigne FAC, Poulton AJ, Tarling GA, Ward P, Daniels CJ, Fragoso GM, Sanders RJ . 2015 Attenuation of particulate organic carbon flux in the Scotia Sea, Southern Ocean, is controlled by zooplankton fecal pellets. Geophys. Res. Lett. 42, 821-830. (doi:10.1002/2014GL062744) Crossref, Web of Science, Google Scholar - 93.
Henson SA, Yool A, Sanders R . 2015 Variability in efficiency of particulate organic carbon export: a model study. Global Biogeochem. Cycles 29, 33-45. (doi:10.1002/2014GB004965) Crossref, Web of Science, Google Scholar - 94.
Giering SLC, Sanders R, Martin AP, Henson SA, Riley JS, Marsay CM, Johns DG . 2017 Particle flux in the oceans: challenging the steady state assumption. Global Biogeochem. Cycles 31, 159-171. (doi:10.1002/2016GB005424) Crossref, Web of Science, Google Scholar - 95.
Resplandy L, Lévy M, McGillicuddy DJ . 2019 Effects of Eddy-Driven subduction on ocean biological carbon pump. Global Biogeochem. Cycles 33, 1071-1084. (doi:10.1029/2018GB006125) Crossref, Web of Science, Google Scholar - 96.
Bol R, Henson SA, Rumyantseva A, Briggs N . 2018 High-frequency variability of small-particle carbon export flux in the Northeast Atlantic. Global Biogeochem. Cycles 32, 1803-1814. (doi:10.1029/2018GB005963) Crossref, PubMed, Web of Science, Google Scholar - 97.
Llort J, Langlais C, Matear R, Moreau S, Lenton A, Strutton PG . 2018 Evaluating Southern Ocean carbon eddy-pump from biogeochemical-argo floats. J. Geophys. Res. Oceans 123,971-984. (doi:10.1002/2017JC012861) Crossref, Google Scholar - 98.
Briggs N, Perry MJ, Cetinić I, Lee C, D'Asaro E, Gray AM, Rehm E . 2011 High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep Sea Res. Oceanogr. Res. Pap. 58, 1031-1039. (doi:10.1016/j.dsr.2011.07.007) Crossref, Web of Science, Google Scholar - 99.
Henson SA, Briggs N, Carvalho F, Manno C, Mignot A, Thomalla S . 2023 A seasonal transition in biological carbon pump efficiency in the northern Scotia Sea, Southern Ocean. Deep Sea Res. Part II 208, 105274. (doi:10.1016/j.dsr2.2023.105274) Crossref, Google Scholar - 100.
Briggs N, Dall'Olmo G, Claustre H . 2020 Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science (1979) 367, 791 LP-791793. (doi:10.1126/science.aay1790) Web of Science, Google Scholar - 101.
Bishop JKB, Wood TJ, Davis RE, Sherman JT . 2004 Robotic observations of enhanced carbon biomass and export at 55°s during SOFeX. Science (1979) 304, 417-420. (doi:10.1126/science.1087717) Crossref, PubMed, Web of Science, Google Scholar - 102.
Bishop JKB, Davis RE, Sherman JT . 2002 Robotic observations of dust storm enhancement of carbon biomass in the North Pacific. Science (1979) 298, 817-821. (doi:10.1126/science.1074961) Web of Science, Google Scholar - 103.
Moreau S, Boyd PW, Strutton PG . 2020 Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone. Nat. Commun. 11, 3108. (doi:10.1038/s41467-020-16931-0) Crossref, PubMed, Web of Science, Google Scholar - 104.
Lombard F et al. 2019 Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196. (doi:10.3389/fmars.2019.00196) Crossref, Web of Science, Google Scholar - 105.
Sanders RJ et al. 2016 Controls over ocean mesopelagic interior carbon storage (COMICS): fieldwork, synthesis, and modeling efforts. Front. Mar. Sci. 3, 136. (doi:10.3389/fmars.2016.00136) Crossref, Web of Science, Google Scholar - 106.
Siegel DA et al. 2016 Prediction of the export and fate of global ocean net primary production: The EXPORTS science plan. Front. Mar. Sci. 3, 22. (doi:10.3389/fmars.2016.00022) Crossref, Web of Science, Google Scholar - 107.
Gregor L, Kok S, Monteiro PMS . 2018 Interannual drivers of the seasonal cycle of CO2 in the Southern Ocean. Biogeosciences 15, 2361-2378. (doi:10.5194/bg-15-2361-2018) Crossref, Web of Science, Google Scholar - 108.
Gregor L, Lebehot AD, Kok S, Scheel Monteiro PM . 2019 A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) – have we hit the wall? Geosci. Model Dev. 12, 5113-5136. (doi:10.5194/gmd-12-5113-2019) Crossref, Web of Science, Google Scholar - 109.
Mongwe NP, Chang N, Monteiro PMS . 2016 The seasonal cycle as a mode to diagnose biases in modelled CO2 fluxes in the Southern Ocean. Ocean Model (Oxf) 106, 90-103. (doi:10.1016/j.ocemod.2016.09.006) Crossref, Web of Science, Google Scholar - 110.
Mongwe NP, Vichi M, Monteiro PMS . 2018 The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models. Biogeosciences 15, 2851-2872. (doi:10.5194/bg-15-2851-2018) Crossref, Web of Science, Google Scholar - 111.
McKiver WJ, Vichi M, Lovato T, Storto A, Masina S . 2015 Impact of increased grid resolution on global marine biogeochemistry. J. Mar. Sys. 147, 153-168. (doi:10.1016/j.jmarsys.2014.10.003) Crossref, Web of Science, Google Scholar - 112.
Vichi M, Masina S . 2009 Skill assessment of the PELAGOS global ocean biogeochemistry model over the period 1980–2000. Biogeosciences 6, 2333-2353. (doi:10.5194/bg-6-2333-2009) Crossref, Web of Science, Google Scholar - 113.
Doney SC, Lima I, Moore JK, Lindsay K, Behrenfeld MJ, Westberry TK, Mahowald N, Glover DM, Takahashi T . 2009 Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data. J. Mar. Sys. 76, 95-112. (doi:10.1016/j.jmarsys.2008.05.015) Crossref, Web of Science, Google Scholar - 114.
Steinacher M et al. 2010 Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7, 979-1005. (doi:10.5194/bg-7-979-2010) Crossref, Web of Science, Google Scholar - 115.
Swart S et al. 2012 Southern ocean seasonal cycle experiment 2012: seasonal scale climate and carbon cycle links. S. Afr. J. Sci. 108, 3-5. (doi:10.4102/sajs.v108i3/4.1089) Crossref, Web of Science, Google Scholar - 116.
Boyd PW, Doney SC, Eggins S, Ellwood MJ, Fourquez M, Nunn BL, Strzepek R, Timmins-Schiffman E . 2022 Transitioning global change experiments on Southern Ocean phytoplankton from lab to field settings: Insights and challenges. Limnol. Oceanogr. 67, 1911-1930. (doi:10.1002/lno.12175) Crossref, Web of Science, Google Scholar - 117.
Tagliabue A, Bowie AR, Boyd PW, Buck KN, Johnson KS, Saito MA . 2017 The integral role of iron in ocean biogeochemistry. Nature 543, 51-59. (doi:10.1038/nature21058) Crossref, PubMed, Web of Science, Google Scholar - 118.
Nicholson S-A, Lévy M, Jouanno J, Capet X, Swart S, Monteiro PMS . 2019 Iron supply pathways between the surface and subsurface waters of the Southern Ocean: from winter entrainment to summer storms. Geophys. Res. Lett. 46, 14 567-14 575. (doi:10.1029/2019GL084657) Crossref, Web of Science, Google Scholar - 119.
Laufkötter C et al. 2015 Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955-6984. (doi:10.5194/bg-12-6955-2015) Crossref, Web of Science, Google Scholar - 120.
Halfter S, Cavan EL, Swadling KM, Eriksen RS, Boyd PW . 2020 The role of zooplankton in establishing carbon export regimes in the Southern Ocean – a comparison of two representative case studies in the Subantarctic region. Front. Mar. Sci. 7, 567917. (doi:10.3389/fmars.2020.567917) Crossref, Web of Science, Google Scholar - 121.
Chown SL . 2020 Marine food webs destabilized. Science (1979) 369, 770-771. (doi:10.1126/science.abd5739) Web of Science, Google Scholar - 122.
Nicholson S-A, Lévy M, Llort J, Swart S, Monteiro PMS . 2016 Investigation into the impact of storms on sustaining summer primary productivity in the Sub-Antarctic Ocean. Geophys. Res. Lett. 43, 9192-9199. (doi:10.1002/2016GL069973) Crossref, Web of Science, Google Scholar - 123.
Uchida T, Balwada D, Abernathey RP, McKinley GA, Smith SK, Lévy M . 2020 Vertical eddy iron fluxes support primary production in the open Southern Ocean. Nat. Commun. 11, 1125. (doi:10.1038/s41467-020-14955-0) Crossref, PubMed, Web of Science, Google Scholar - 124.
Wei L, Qin T . 2016 Characteristics of cyclone climatology and variability in the Southern Ocean. Acta Oceanol. Sin. 35, 59-67. (doi:10.1007/s13131-016-0913-y) Crossref, Web of Science, Google Scholar - 125.
Setzer AW, Kayano MT, Oliveira MR, Ceron WL, Rosa MB . 2022 Increase in the number of explosive low–level cyclones around King George Island in the last three decades. An Acad. Bras. Cienc. 94. (doi:10.1590/0001-3765202220210633) Crossref, PubMed, Web of Science, Google Scholar - 126.
Shaw TA, Miyawaki O, Donohoe A . 2022 Stormier Southern Hemisphere induced by topography and ocean circulation. Proc. Natl Acad. Sci. USA 119, e2123512119. (doi:10.1073/pnas.2123512119) Crossref, PubMed, Web of Science, Google Scholar - 127.
Zhang Y, Chambers D, Liang X . 2021 Regional trends in southern ocean eddy kinetic energy. J. Geophys. Res. Oceans 126, e2020JC016973. (doi:10.1029/2020JC016973) Crossref, Google Scholar - 128.
Beech N, Rackow T, Semmler T, Danilov S, Wang Q, Jung T . 2022 Long-term evolution of ocean eddy activity in a warming world. Nat. Clim. Change 12, 910-917. (doi:10.1038/s41558-022-01478-3) Crossref, Web of Science, Google Scholar - 129.
Risien CM, Chelton DB . 2008 A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr. 38, 2379-2413. (doi:10.1175/2008JPO3881.1) Crossref, Web of Science, Google Scholar - 130.
Lin X, Zhai X, Wang Z, Munday DR . 2018 Mean, variability, and trend of southern ocean wind stress: role of wind fluctuations. J. Clim. 31, 3557-3573. (doi:10.1175/JCLI-D-17-0481.1) Crossref, Web of Science, Google Scholar - 131.
Hell MC, Cornuelle BD, Gille ST, Lutsko NJ . 2021 Time-varying empirical probability densities of Southern Ocean Surface winds: linking the leading mode to sam and quantifying wind product differences. J. Clim. 34, 5497-5522. (doi:10.1175/JCLI-D-20-0629.1) Web of Science, Google Scholar - 132.
Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA . 2010 Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119-137. (doi:10.1093/plankt/fbp098) Crossref, Web of Science, Google Scholar - 133.
Henson SA, Cael BB, Allen SR, Dutkiewicz S . 2021 Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372. (doi:10.1038/s41467-021-25699-w) Crossref, PubMed, Web of Science, Google Scholar - 134.
Leung SW, Weber T, Cram JA, Deutsch C . 2021 Variable particle size distributions reduce the sensitivity of global export flux to climate change. Biogeosciences 18, 229-250. (doi:10.5194/bg-18-229-2021) Crossref, Web of Science, Google Scholar - 135.
Siegel DA, Buesseler KO, Doney SC, Sailley SF, Behrenfeld MJ, Boyd PW . 2014 Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycles 28, 181-196. (doi:10.1002/2013GB004743) Crossref, Web of Science, Google Scholar - 136.
Westberry T, Behrenfeld MJ, Siegel DA, Boss E . 2008 Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem. Cycles 22, 1-18. (doi:10.1029/2007GB003078) Crossref, Web of Science, Google Scholar - 137.
Kostadinov TS, Siegel DA, Maritorena S . 2009 Retrieval of the particle size distribution from satellite ocean color observations. J. Geophys. Res. Oceans 114, 1-22. (doi:10.1029/2009JC005303) Crossref, Google Scholar - 138.
Moutier W, Thomalla JS, Bernard S, Wind G, Ryan-Keogh JT, Smith EM . 2019 Evaluation of chlorophyll-a and POC MODIS Aqua products in the Southern Ocean. Remote Sens. (Basel). 11, 1793. (doi:10.3390/rs11151793) Crossref, Web of Science, Google Scholar - 139.
Pope A, Wagner P, Johnson R, Shutler JD, Baeseman J, Newman L . 2017 Community review of Southern Ocean satellite data needs. Antarct. Sci. 29, 97-138. (doi:10.1017/S0954102016000390) Crossref, Web of Science, Google Scholar - 140.
Robinson CM, Huot Y, Schuback N, Ryan-Keogh TJ, Thomalla SJ, Antoine D . 2021 High latitude Southern Ocean phytoplankton have distinctive bio-optical properties. Opt. Express 29, 21 084-21 112. (doi:10.1364/OE.426737) Crossref, Web of Science, Google Scholar - 141.
Bellacicco M, Volpe G, Briggs N, Brando V, Pitarch J, Landolfi A, Colella S, Marullo S, Santoleri R . 2018 Global distribution of non-algal particles from ocean color data and implications for phytoplankton biomass detection. Geophys. Res. Lett. 45, 7672-7682. (doi:10.1029/2018GL078185) Crossref, Web of Science, Google Scholar - 142.
Brewin RJW et al. 2011 An intercomparison of bio-optical techniques for detecting dominant phytoplankton size class from satellite remote sensing. Remote Sens. Environ. 115, 325-339. (doi:10.1016/j.rse.2010.09.004) Crossref, Web of Science, Google Scholar - 143.
Allison DB, Stramski D, Mitchell BG . 2010 Empirical ocean color algorithms for estimating particulate organic carbon in the Southern Ocean. J. Geophys. Res. Oceans 115, 1-16. (doi:10.1029/2009JC006040) Google Scholar - 144.
Evers-King H et al. 2017 Validation and intercomparison of ocean color algorithms for estimating particulate organic carbon in the oceans. Front. Mar. Sci. 4, 251. (doi:10.3389/fmars.2017.00251) Crossref, Web of Science, Google Scholar - 145.
Soppa M, Dinter T, Taylor B, Peeken I, Bracher A . 2012 Comparison of remotely sensed phytoplankton functional types retrievals in the Southern Ocean. InThe 44th Int. Liege Colloquium On Ocean Dynamics, Liege, Belgium, 7–11 May 2012 . Bremerhaven, Germany: AWI. Google Scholar - 146.
Kostadinov TS et al. 2017 Inter-comparison of phytoplankton functional type phenology metrics derived from ocean color algorithms and earth system models. Remote Sens. Environ. 190, 162-177. (doi:10.1016/j.rse.2016.11.014) Crossref, Web of Science, Google Scholar - 147.
Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ . 2004 Underwater gliders for ocean research. Mar Technol Soc J 38, 73-84. (doi:10.4031/002533204787522703) Crossref, Web of Science, Google Scholar - 148.
Alkire MB, Lee C, D'Asaro E, Perry MJ, Briggs N, Cetinić I, Gray A . 2014 Net community production and export from Seaglider measurements in the North Atlantic after the spring bloom. J. Geophys. Res. Oceans 119, 6121-6139. (doi:10.1002/2014JC010105) Crossref, Google Scholar - 149.
Arteaga LA, Behrenfeld MJ, Boss E, Westberry TK . 2022 Vertical structure in phytoplankton growth and productivity inferred from biogeochemical-argo floats and the carbon-based productivity model. Global Biogeochem. Cycles 36, e2022GB007389. (doi:10.1029/2022GB007389) Crossref, Web of Science, Google Scholar - 150.
Thomalla SJ, Ryan-Keogh T . 2023Code for: understanding the sensitivity of the Southern Ocean Biological Carbon pump to climate change: Insights from a seasonal cycle approach . Zenodo. (doi:10.5281/zenodo.7108117) Google Scholar - 151.
Thomalla SJ et al. 2023Southern Ocean phytoplankton dynamics and carbon export: insights from a seasonal cycle approach . Figshare. (doi:10.6084/m9.figshare.c.6602317) Google Scholar