Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences

    The structural features required for the formation of two- versus three-stranded coiled coils have been explored using de novo protein design. Peptides with leucine at the ‘a’ and ‘d’ positions of a coiled-coil (general sequence: Leua Xaab Xaac Leud Glue Xaaf Lysg) exist in a non-cooperative equilibrium between unstructured monomers and helical dimers and helical trimers. Substituting valine into each ‘a’ position produces peptides which still form trimers at high concentrations, whereas substitution of a single asparagine at the ‘a’ position of the third heptad yields a dimer. During the course of this work, we also re-investigated a helical propensity scale derived using a series of coiled-coil peptides previously believed to exist in a monomer-dimer equilibrium (O’Neil & DeGrado 1990). Detailed analysis of the concentration dependence of ellipticity at 222 nm reveals that they exist in a non-cooperative monomer-dimer-trimer equilibrium. However, the concentration of trimer near the midpoint of the concentration-dependent transition is small, so the previously determined values of ΔΔGα using the approximate monomer-dimer scheme are indistinguishable from the values obtained employing the complete monomer-dimer-trimer equilibrium.

    Footnotes

    This text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR.