Philosophical Transactions of the Royal Society B: Biological Sciences

    This article concerns the nature of evoked brain responses and the principles underlying their generation. We start with the premise that the sensory brain has evolved to represent or infer the causes of changes in its sensory inputs. The problem of inference is well formulated in statistical terms. The statistical fundaments of inference may therefore afford important constraints on neuronal implementation. By formulating the original ideas of Helmholtz on perception, in terms of modern-day statistical theories, one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts.

    It turns out that the problems of inferring the causes of sensory input (perceptual inference) and learning the relationship between input and cause (perceptual learning) can be resolved using exactly the same principle. Specifically, both inference and learning rest on minimizing the brain's free energy, as defined in statistical physics. Furthermore, inference and learning can proceed in a biologically plausible fashion. Cortical responses can be seen as the brain’s attempt to minimize the free energy induced by a stimulus and thereby encode the most likely cause of that stimulus. Similarly, learning emerges from changes in synaptic efficacy that minimize the free energy, averaged over all stimuli encountered. The underlying scheme rests on empirical Bayes and hierarchical models of how sensory input is caused. The use of hierarchical models enables the brain to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of cortical organization and responses. The aim of this article is to encompass many apparently unrelated anatomical, physiological and psychophysical attributes of the brain within a single theoretical perspective.

    In terms of cortical architectures, the theoretical treatment predicts that sensory cortex should be arranged hierarchically, that connections should be reciprocal and that forward and backward connections should show a functional asymmetry (forward connections are driving, whereas backward connections are both driving and modulatory). In terms of synaptic physiology, it predicts associative plasticity and, for dynamic models, spike-timing-dependent plasticity. In terms of electrophysiology, it accounts for classical and extra classical receptive field effects and long-latency or endogenous components of evoked cortical responses. It predicts the attenuation of responses encoding prediction error with perceptual learning and explains many phenomena such as repetition suppression, mismatch negativity (MMN) and the P300 in electroencephalography. In psychophysical terms, it accounts for the behavioural correlates of these physiological phenomena, for example, priming and global precedence. The final focus of this article is on perceptual learning as measured with the MMN and the implications for empirical studies of coupling among cortical areas using evoked sensory responses.

    References

    • Absher J.R& Benson D.F. 1993Disconnection syndromes: an overview of Geschwind's contributions. Neurology. 43, 862–867. Crossref, PubMed, ISIGoogle Scholar
    • Angelucci A, Levitt J.B& Lund J.SAnatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Prog. Brain Res. 136, 2002a373–388. Crossref, PubMed, ISIGoogle Scholar
    • Angelucci A, Levitt J.B, Walton E.J, Hupe J.M, Bullier J& Lund J.SCircuits for local and global signal integration in primary visual cortex. J. Neurosci. 22, 2002b8633–8646. Crossref, PubMed, ISIGoogle Scholar
    • Atick J.J& Redlich A.N. 1990Towards a theory of early visual processing. Neural Comput. 2, 308–320. Crossref, ISIGoogle Scholar
    • Baldeweg T, Klugman A, Gruzelier J.H& Hirsch S.R. 2002Impairment in frontal but not temporal components of mismatch negativity in schizophrenia. Int. J. Psychophysiol. 43, 111–122. Crossref, PubMed, ISIGoogle Scholar
    • Baldeweg T, Klugman A, Gruzelier J& Hirsch S.R. 2004Mismatch negativity potentials and cognitive impairment in schizophrenia. Schizophr. Res. 6, 203–217. Crossref, ISIGoogle Scholar
    • Ballard D.H, Hinton G.E& Sejnowski T.J. 1983Parallel visual computation. Nature. 306, 21–26. Crossref, PubMed, ISIGoogle Scholar
    • Barlow H.BPossible principles underlying the transformation of sensory messages. Sensory communication& Rosenblith W.A. 1961Cambridge, MA:MIT Press. Google Scholar
    • Bell A.J& Sejnowski T.J. 1995An information maximisation approach to blind separation and blind de-convolution. Neural Comput. 7, 1129–1159. Crossref, PubMed, ISIGoogle Scholar
    • Brodmann K. 1905Beitrage zur histologischen lokalisation der Groβhirnrinde. III. Mitteilung. Die Rindefelder der niederen Affen. J. Psychol. Neurol. 4, 177–226. Google Scholar
    • Brodmann KVergleichende Lokaisationslehre der Groβhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. 1909Leipzig:Barthpp. 1–9. Google Scholar
    • Büchel C& Friston K.J. 1997Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cereb. Cortex. 7, 768–778. Crossref, PubMed, ISIGoogle Scholar
    • Buonomano D.V& Merzenich M.M. 1998Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186. Crossref, PubMed, ISIGoogle Scholar
    • Crick F& Koch C. 1998Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature. 391, 245–250. Crossref, PubMed, ISIGoogle Scholar
    • David O& Friston K.J. 2003A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage. 20, 1743–1755. Crossref, PubMed, ISIGoogle Scholar
    • David O, Kiebel S.J, Harrison L.M, Mattout J, Kilner J.M& Friston K.JDynamic causal modelling of evoked responses in EEG and MEG. (2005). Google Scholar
    • Dayan P& Abbot L.FTheoretical neuroscience. Computational and mathematical modelling of neural systems. 2001Cambridge, MA:MIT Press. Google Scholar
    • Dayan P, Hinton G.E& Neal R.M. 1995The Helmholtz machine. Neural Comput. 7, 889–904. Crossref, PubMed, ISIGoogle Scholar
    • Dempster A.P, Laird N.M& Rubin . 1977Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. 39, 1–38. Google Scholar
    • Desimone R. 1996Neural mechanisms for visual memory and their role in attention. Proc. Natl Acad. Sci. USA. 93, 13 494–13 499. Crossref, ISIGoogle Scholar
    • Efron B& Morris C. 1973Stein's estimation rule and its competitors—an empirical Bayes approach. J. Am. Stat. Assoc. 68, 117–130. ISIGoogle Scholar
    • Felleman D.J& Van Essen D.C. 1991Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex. 1, 1–47. Crossref, PubMed, ISIGoogle Scholar
    • Foldiak P. 1990Forming sparse representations by local anti-Hebbian learning. Biol. Cybern. 64, 165–170. Crossref, PubMed, ISIGoogle Scholar
    • Frey U& Morris R.G.M. 1997Synaptic tagging and long-term potentiation. Nature. 385, 533–536. Crossref, PubMed, ISIGoogle Scholar
    • Friston K.J. 1998The disconnection hypothesis. Schizophr. Res. 30, 115–125. Crossref, PubMed, ISIGoogle Scholar
    • Friston K.J. 2000The labile brain. III. Transients and spatio-temporal receptive fields. Phil. Trans. R. Soc. B. 355, 253–265. Link, ISIGoogle Scholar
    • Friston K.J. 2002Functional integration and inference in the brain. Prog. Neurobiol. 68, 113–143. Crossref, PubMed, ISIGoogle Scholar
    • Friston K.J. 2003Learning and inference in the brain. Neural Netw. 16, 1325–1352. Crossref, PubMed, ISIGoogle Scholar
    • Friston K.J, Harrison L& Penny W. 2003Dynamic causal modelling. NeuroImage. 19, 1273–1302. Crossref, PubMed, ISIGoogle Scholar
    • Fuhrmann G, Segev I, Markram H& Tsodyks M. 2002Coding of temporal information by activity-dependent synapses. J. Neurophysiol. 87, 140–148. Crossref, PubMed, ISIGoogle Scholar
    • Girard P& Bullier J. 1989Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. J. Neurophysiol. 62, 1287–1301. Crossref, PubMed, ISIGoogle Scholar
    • Han S& He X. 2003Modulation of neural activities by enhanced local selection in the processing of compound stimuli. Hum. Brain Mapp. 19, 273–281. Crossref, PubMed, ISIGoogle Scholar
    • Harrison L.M, Rees G& Friston K.JExtra-classical and predictive coding effects measured with fMRI. (2004). Google Scholar
    • Harth E, Unnikrishnan K.P& Pandya A.S. 1987The inversion of sensory processing by feedback pathways: a model of visual cognitive functions. Science. 237, 184–187. Crossref, PubMed, ISIGoogle Scholar
    • Helmholtz H& Southall J.P.C vol. 31860/1962New York:Dover(English trans.). Google Scholar
    • Henson R, Shallice T& Dolan R. 2000Neuroimaging evidence for dissociable forms of repetition priming. Science. 287, 1269–1272. Crossref, PubMed, ISIGoogle Scholar
    • Hilgetag C.C, O'Neill M.A& Young M.P. 2000Hierarchical organisation of macaque and cat cortical sensory systems explored with a novel network processor. Phil. Trans. R. Soc. B. 355, 71–89. Link, ISIGoogle Scholar
    • Hinton G.E, Dayan P, Frey B.J& Neal R.M. 1995The ‘Wake–Sleep’ algorithm for unsupervised neural networks. Science. 268, 1158–1161. Crossref, PubMed, ISIGoogle Scholar
    • Hirsch J.A& Gilbert C.D. 1991Synaptic physiology of horizontal connections in the cat's visual cortex. J. Neurosci. 11, 1800–1809. Crossref, PubMed, ISIGoogle Scholar
    • Hochstein S& Ahissar M. 2002View from the top: hierarchies and reverse hierarchies in the visual system. Neuron. 36, 791–804. Crossref, PubMed, ISIGoogle Scholar
    • Hupe J.M, James A.C, Payne B.R, Lomber S.G, Girard P& Bullier J. 1998Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature. 394, 784–787. Crossref, PubMed, ISIGoogle Scholar
    • Jääskeläinen I.P, et al.2004Human posterior auditory cortex gates novel sounds to consciousness. Proc. Natl Acad. Sci. 101, 6809–6814. Crossref, PubMed, ISIGoogle Scholar
    • Jansen B.H& Rit V.G. 1995Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357–366. Crossref, PubMed, ISIGoogle Scholar
    • Kass R.E& Steffey D. 1989Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). J. Am. Stat. Assoc. 407, 717–726. CrossrefGoogle Scholar
    • Kawato M, Hayakawa H& Inui T. 1993A forward-inverse optics model of reciprocal connections between visual cortical areas. Network. 4, 415–422. Crossref, ISIGoogle Scholar
    • Kay J& Phillips W.A. 1996Activation functions, computational goals and learning rules for local processors with contextual guidance. Neural Comput. 9, 895–910. Crossref, ISIGoogle Scholar
    • Kepecs A, Van Rossum M.C, Song S& Tegner J. 2002Spike-timing-dependent plasticity: common themes and divergent vistas. Biol. Cybern. 87, 446–458. Crossref, PubMed, ISIGoogle Scholar
    • Kersten D, Mamassian P& Yuille A. 2004Object perception as Bayesian inference. Annu. Rev. Psychol. 55, 271–304. Crossref, PubMed, ISIGoogle Scholar
    • Kötter R& Wanke E. 2005Mapping brains without coordinates. Phil. Trans. R. Soc. B. 360, . Link, ISIGoogle Scholar
    • Lee T.S& Mumford D. 2003Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. Opt. Image Sci. Vis. 20, 1434–1448. Crossref, PubMed, ISIGoogle Scholar
    • Linsker R. 1990Perceptual neural organisation: some approaches based on network models and information theory. Annu. Rev. Neurosci. 13, 257–281. Crossref, PubMed, ISIGoogle Scholar
    • Locke JAn essay concerning human understanding. 1690/1976London:Dent. Google Scholar
    • MacKay D.MThe epistemological problem for automata. In. Automata studies (ed. C.E. Shannon & J. McCarthy)1956Princeton, NJ:Princeton University Presspp. 235–251. Google Scholar
    • Martin S.J, Grimwood P.D& Morris R.G. 2000Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711. Crossref, PubMed, ISIGoogle Scholar
    • Maunsell J.H& Van Essen D.C. 1983The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurosci. 3, 2563–2586. Crossref, PubMed, ISIGoogle Scholar
    • Mehta M.R. 2001Neuronal dynamics of predictive coding. Neuroscientist. 7, 490–495. Crossref, PubMed, ISIGoogle Scholar
    • Mesulam M.M. 1998From sensation to cognition. Brain. 121, 1013–1052. Crossref, PubMed, ISIGoogle Scholar
    • Mumford D. 1992On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol. Cybern. 66, 241–251. Crossref, PubMed, ISIGoogle Scholar
    • Murphy P.C& Sillito A.M. 1987Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature. 329, 727–729. Crossref, PubMed, ISIGoogle Scholar
    • Murray S.O, Kersten D, Olshausen B.A, Schrater P& Woods D.L. 2002Shape perception reduces activity in human primary visual cortex. Proc. Natl Acad. Sci. USA. 99, 15 164–15 169. Crossref, ISIGoogle Scholar
    • Näätänen R. 2003Mismatch negativity: clinical research and possible applications. Int. J. Psychophysiol. 48, 179–188. Crossref, PubMed, ISIGoogle Scholar
    • Näätänen R, Pakarinen S, Rinne T& Takegata R. 2004The mismatch negativity (MMN): towards the optimal paradigm. Clin. Neurophysiol. 115, 140–144. Crossref, PubMed, ISIGoogle Scholar
    • Neisser UCognitive psychology. 1967New York:Appleton-Century-Crofts. Google Scholar
    • Oja E. 1989Neural networks, principal components, and subspaces. Int. J. Neural Syst. 1, 61–68. CrossrefGoogle Scholar
    • Olshausen B.A& Field D.J. 1996Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 381, 607–609. Crossref, PubMed, ISIGoogle Scholar
    • Optican L& Richmond B.J. 1987Temporal encoding of two-dimensional patterns by single units in primate inferior cortex. II. Information theoretic analysis. J. Neurophysiol. 57, 132–146. Crossref, PubMed, ISIGoogle Scholar
    • Pack C.C& Born R.T. 2001Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature. 409, 1040–1042. Crossref, PubMed, ISIGoogle Scholar
    • Phillips W.A& Singer W. 1997In search of common foundations for cortical computation. Behav. Brain Sci. 20, 57–83. Crossref, PubMed, ISIGoogle Scholar
    • Phillips C.G, Zeki S& Barlow H.B. 1984Localization of function in the cerebral cortex; past present and future. Brain. 107, 327–361. Crossref, PubMed, ISIGoogle Scholar
    • Poggio T, Torre V& Koch C. 1985Computational vision and regularization theory. Nature. 317, 314–319. Crossref, PubMed, ISIGoogle Scholar
    • Pollen D.A. 1999On the neural correlates of visual perception. Cereb. Cortex. 9, 4–19. Crossref, PubMed, ISIGoogle Scholar
    • Rainer G, Rao S.C& Miller E.K. 1999Prospective coding for objects in primate prefrontal cortex. J. Neurosci. 19, 5493–5505. Crossref, PubMed, ISIGoogle Scholar
    • Rao R.P. 1999An optimal estimation approach to visual perception and learning. Vision Res. 39, 1963–1989. Crossref, PubMed, ISIGoogle Scholar
    • Rao R.P& Ballard D.H. 1999Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive field effects. Nat. Neurosci. 2, 79–87. Crossref, PubMed, ISIGoogle Scholar
    • Rivadulla C, Martinez L.M, Varela C& Cudeiro J. 2002Completing the corticofugal loop: a visual role for the corticogeniculate type 1 metabotropic glutamate receptor. J. Neurosci. 22, 2956–2962. Crossref, PubMed, ISIGoogle Scholar
    • Rockland K.S& Pandya D.N. 1979Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res. 179, 3–20. Crossref, PubMed, ISIGoogle Scholar
    • Salin P.-A& Bullier J. 1995Corticocortical connections in the visual system: structure and function. Psychol. Bull. 75, 107–154. Google Scholar
    • Sandell J.H& Schiller P.H. 1982Effect of cooling area 18 on striate cortex cells in the squirrel monkey. J. Neurophysiol. 48, 38–48. Crossref, PubMed, ISIGoogle Scholar
    • Sherman S.M& Guillery R.W. 1998On the actions that one nerve cell can have on another: distinguishing ‘drivers’ from ‘modulators’. Proc. Natl Acad. Sci. USA. 95, 7121–7126. Crossref, PubMed, ISIGoogle Scholar
    • Simoncelli E.P& Olshausen B.A. 2001Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1216. Crossref, PubMed, ISIGoogle Scholar
    • Sugase Y, Yamane S, Ueno S& Kawano K. 1999Global and fine information coded by single neurons in the temporal visual cortex. Nature. 400, 869–873. Crossref, PubMed, ISIGoogle Scholar
    • Tononi G, Sporns O& Edelman G.M. 1994A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl Acad. Sci. USA. 91, 5033–5037. Crossref, PubMed, ISIGoogle Scholar
    • Tovee M.J, Rolls E.T, Treves A& Bellis R.P. 1993Information encoding and the response of single neurons in the primate temporal visual cortex. J. Neurophysiol. 70, 640–654. Crossref, PubMed, ISIGoogle Scholar
    • Umbricht D, Schmid L, Koller R, Vollenweider F.X, Hell D& Javitt D.C. 2000Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers. Arch. Gen. Psychiatry. 57, 1139–1147. Crossref, PubMedGoogle Scholar
    • Zeki SThe motion pathways of the visual cortex. Vision: coding and efficiency& Blakemore C. 1990pp. 321–345. Eds. UK:Cambridge University Press. Google Scholar
    • Zeki SA vision of the brain. 1993Oxford:Blackwell Scientific. Google Scholar
    • Zeki S& Shipp S. 1988The functional logic of cortical connections. Nature. 335, 311–317. Crossref, PubMed, ISIGoogle Scholar