Philosophical Transactions of the Royal Society B: Biological Sciences

    This year, the field of neuroscience celebrates the 50th anniversary of Mountcastle's discovery of the cortical column. In this review, we summarize half a century of research and come to the disappointing realization that the column may have no function. Originally, it was described as a discrete structure, spanning the layers of the somatosensory cortex, which contains cells responsive to only a single modality, such as deep joint receptors or cutaneous receptors. Subsequently, examples of columns have been uncovered in numerous cortical areas, expanding the original concept to embrace a variety of different structures and principles. A ‘column’ now refers to cells in any vertical cluster that share the same tuning for any given receptive field attribute. In striate cortex, for example, cells with the same eye preference are grouped into ocular dominance columns. Unaccountably, ocular dominance columns are present in some species, but not others. In principle, it should be possible to determine their function by searching for species differences in visual performance that correlate with their presence or absence. Unfortunately, this approach has been to no avail; no visual faculty has emerged that appears to require ocular dominance columns. Moreover, recent evidence has shown that the expression of ocular dominance columns can be highly variable among members of the same species, or even in different portions of the visual cortex in the same individual. These observations deal a fatal blow to the idea that ocular dominance columns serve a purpose. More broadly, the term ‘column’ also denotes the periodic termination of anatomical projections within or between cortical areas. In many instances, periodic projections have a consistent relationship with some architectural feature, such as the cytochrome oxidase patches in V1 or the stripes in V2. These tissue compartments appear to divide cells with different receptive field properties into distinct processing streams. However, it is unclear what advantage, if any, is conveyed by this form of columnar segregation. Although the column is an attractive concept, it has failed as a unifying principle for understanding cortical function. Unravelling the organization of the cerebral cortex will require a painstaking description of the circuits, projections and response properties peculiar to cells in each of its various areas.

    References

    • Adams D.L& Horton J.C. 2002Shadows cast by retinal blood vessels mapped in primary visual cortex. Science. 298, 572–576. Crossref, PubMed, ISIGoogle Scholar
    • Adams D.L& Horton J.CCapricious expression of cortical columns in the primate brain. Nat. Neurosci. 6, 2003a113–114. Crossref, PubMed, ISIGoogle Scholar
    • Adams D.L& Horton J.CThe representation of retinal blood vessels in primate striate cortex. J. Neurosci. 23, 2003b5984–5997. Crossref, PubMed, ISIGoogle Scholar
    • Adams D.L& Zeki S. 2001Functional organization of macaque V3 for stereoscopic depth. J. Neurophysiol. 86, 2195–2203. Crossref, PubMed, ISIGoogle Scholar
    • Albright T.D, Desimone R& Gross C.G. 1984Columnar organization of directionally selective cells in visual area MT of the macaque. J. Neurophysiol. 51, 16–31. Crossref, PubMed, ISIGoogle Scholar
    • Albus K. 1975A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. II. The spatial organization of the orientation domain. Exp. Brain Res. 24, 181–202. Crossref, PubMed, ISIGoogle Scholar
    • Amirikian B& Georgopoulos A.P. 2003Modular organization of directionally tuned cells in the motor cortex: is there a short-range order?. Proc. Natl Acad. Sci. USA. 100, 12 474–12 479. Crossref, ISIGoogle Scholar
    • Angelucci A, Levitt J.B, Walton E.J, Hupe J.M, Bullier J& Lund J.S. 2002Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 22, 8633–8646. Crossref, PubMed, ISIGoogle Scholar
    • Angevine J& Sidman R. 1961Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature. 192, 766–768. Crossref, PubMed, ISIGoogle Scholar
    • Anthony T.E, Klein C, Fishell G& Heintz N. 2004Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron. 41, 881–890. Crossref, PubMed, ISIGoogle Scholar
    • Bartfeld E& Grinvald A. 1992Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc. Natl Acad. Sci. USA. 89, 11 905–11 909. Crossref, ISIGoogle Scholar
    • Basole A, White L.E& Fitzpatrick D. 2003Mapping multiple features in the population response of visual cortex. Nature. 423, 986–990. Crossref, PubMed, ISIGoogle Scholar
    • Bear M.F& Rittenhouse C.D. 1999Molecular basis for induction of ocular dominance plasticity. J. Neurobiol. 41, 83–91. Crossref, PubMedGoogle Scholar
    • Blasdel G.GDifferential imaging of ocular dominance and orientation selectivity in monkey striate cortex. J. Neurosci. 12, 1992a3115–3138. Crossref, PubMed, ISIGoogle Scholar
    • Blasdel G.GOrientation selectivity, preference, and continuity in monkey striate cortex. J. Neurosci. 12, 1992b3139–3161. Crossref, PubMed, ISIGoogle Scholar
    • Blasdel G& Campbell D. 2001Functional retinotopy of monkey visual cortex. J. Neurosci. 21, 8286–8301. Crossref, PubMed, ISIGoogle Scholar
    • Blasdel G.G& Salama G. 1986Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature. 321, 579–585. Crossref, PubMed, ISIGoogle Scholar
    • Bonhoeffer T& Grinvald A. 1991Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature. 353, 429–431. Crossref, PubMed, ISIGoogle Scholar
    • Born, R. T. & Tootell, R. B. 1992 Segregation of global and local motion processing in primate middle temporal visual area. Nature357, 497–499. Google Scholar
    • Bosking W.H, Zhang Y, Schofield B& Fitzpatrick D. 1997Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17, 2112–2127. Crossref, PubMed, ISIGoogle Scholar
    • Boyd J.D& Casagrande V.A. 1999Relationships between cytochrome oxidase (CO) blobs in primate primary visual cortex (V1) and the distribution of neurons projecting to the middle temporal area (MT). J. Comp. Neurol. 409, 573–591. Crossref, PubMed, ISIGoogle Scholar
    • Boyd J.D& Matsubara J.A. 1996Laminar and columnar patterns of geniculocortical projections in the cat: relationship to cytochrome oxidase. J. Comp. Neurol. 365, 659–682. Crossref, PubMed, ISIGoogle Scholar
    • Bugbee N.M& Goldman-Rakic P.S. 1983Columnar organization of corticocortical projections in squirrel and rhesus monkeys: similarity of column width in species differing in cortical volume. J. Comp. Neurol. 220, 355–364. Crossref, PubMed, ISIGoogle Scholar
    • Bureau I, Shepherd G.M& Svoboda K. 2004Precise development of functional and anatomical columns in the neocortex. Neuron. 42, 789–801. Crossref, PubMed, ISIGoogle Scholar
    • Buxhoeveden D.P& Casanova M.F. 2002The minicolumn hypothesis in neuroscience. Brain. 125, 935–951. Crossref, PubMed, ISIGoogle Scholar
    • Callaway E.M. 1998Local circuits in primary visual cortex of the macaque monkey. Annu. Rev. Neurosci. 21, 47–74. Crossref, PubMed, ISIGoogle Scholar
    • Carder R.K. 1997Immunocytochemical characterization of AMPA-selective glutamate receptor subunits: laminar and compartmental distribution in macaque striate cortex. J. Neurosci. 17, 3352–3363. Crossref, PubMed, ISIGoogle Scholar
    • Carder R.K& Hendry S.H. 1994Neuronal characterization, compartmental distribution, and activity-dependent regulation of glutamate immunoreactivity in adult monkey striate cortex. J. Neurosci. 14, 242–262. Crossref, PubMed, ISIGoogle Scholar
    • Casagrande V.A& Harting J.K. 1975Transneuronal transport of tritiated fucose and proline in the visual pathways of tree shrew Tupaia glis. Brain Res. 96, 367–372. Crossref, PubMed, ISIGoogle Scholar
    • Cases O, Vitalis T, Seif I, De Maeyer E, Sotelo C& Gaspar P. 1996Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron. 16, 297–307. Crossref, PubMed, ISIGoogle Scholar
    • Catania K.C& Kaas J.H. 1995Organization of the somatosensory cortex of the star-nosed mole. J. Comp. Neurol. 351, 549–567. Crossref, PubMed, ISIGoogle Scholar
    • Celio M.R, Scharer L, Morrison J.H, Norman A.W& Bloom F.E. 1986Calbindin immunoreactivity alternates with cytochrome c-oxidase-rich zones in some layers of the primate visual cortex. Nature. 323, 715–717. Crossref, PubMed, ISIGoogle Scholar
    • Chatterjee S& Callaway E.M. 2003Parallel colour-opponent pathways to primary visual cortex. Nature. 426, 668–671. Crossref, PubMed, ISIGoogle Scholar
    • Chaudhuri A& Cynader M.S. 1993Activity-dependent expression of the transcription factor Zif268 reveals ocular dominance columns in monkey visual cortex. Brain Res. 605, 349–353. Crossref, PubMed, ISIGoogle Scholar
    • Chow K.L, Masland R.H& Stewart D.L. 1971Receptive field characteristics of striate cortical neurons in the rabbit. Brain Res. 33, 337–352. Crossref, PubMed, ISIGoogle Scholar
    • Constantine-Paton M& Law M.I. 1978Eye-specific termination bands in tecta of three-eyed frogs. Science. 202, 639–641. Crossref, PubMed, ISIGoogle Scholar
    • Crair M.C, Ruthazer E.S, Gillespie D.S& Stryker M.P. 1997Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J. Neurophysiol. 77, 3381–3385. Crossref, PubMed, ISIGoogle Scholar
    • Crair M.C, Horton J.C, Antonini A& Stryker M.P. 2001Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. J. Comp. Neurol. 430, 235–249. Crossref, PubMed, ISIGoogle Scholar
    • Crowley J.C& Katz L.C. 1999Development of ocular dominance columns in the absence of retinal input. Nat. Neurosci. 2, 1125–1130. Crossref, PubMed, ISIGoogle Scholar
    • Crowley J.C& Katz L.C. 2000Early development of ocular dominance columns. Science. 290, 1321–1324. Crossref, PubMed, ISIGoogle Scholar
    • DeAngelis G.C& Newsome W.T. 1999Organization of disparity-selective neurons in macaque area MT. J. Neurosci. 19, 1398–1415. Crossref, PubMed, ISIGoogle Scholar
    • DeAngelis G.C, Ghose G.M, Ohzawa I& Freeman R.D. 1999Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J. Neurosci. 19, 4046–4064. Crossref, PubMed, ISIGoogle Scholar
    • DeBruyn E.J, Casagrande V.A, Beck P.D& Bonds A.B. 1993Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (Bush Baby): correlations with cortical layers and cytochrome oxidase patterns. J. Neurophysiol. 69, 3–18. Crossref, PubMed, ISIGoogle Scholar
    • DeYoe E.A& Van Essen D.C. 1985Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature. 317, 58–61. Crossref, PubMed, ISIGoogle Scholar
    • DeYoe E.A, Felleman D.J, Van Essen D.C& McClendon E. 1994Multiple processing streams in occipitotemporal visual cortex. Nature. 371, 151–154. Crossref, PubMed, ISIGoogle Scholar
    • Douglas R& Martin K. 2004Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451. Crossref, PubMed, ISIGoogle Scholar
    • Drager U.C. 1975Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 160, 269–290. Crossref, PubMed, ISIGoogle Scholar
    • Duffy K.R& Livingstone M.S. 2003Distribution of non-phosphorylated neurofilament in squirrel monkey V1 is complementary to the pattern of cytochrome-oxidase blobs. Cereb. Cortex. 13, 722–727. Crossref, PubMed, ISIGoogle Scholar
    • Dyck R.H, Chaudhuri A& Cynader M.S. 2003Experience-dependent regulation of the zincergic innervation of visual cortex in adult monkeys. Cereb. Cortex. 13, 1094–1109. Crossref, PubMed, ISIGoogle Scholar
    • Everson R.M, Prashanth A.K, Gabbay M, Knight B.W, Sirovich L& Kaplan E. 1998Representation of spatial frequency and orientation in the visual cortex. Proc. Natl Acad. Sci. USA. 95, 8334–8338. Crossref, PubMed, ISIGoogle Scholar
    • Favorov O.V, Diamond M.E& Whitsel B.L. 1987Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of cat. Proc. Natl Acad. Sci. USA. 84, 6606–6610. Crossref, PubMed, ISIGoogle Scholar
    • Felleman D.J, Burkhalter A& Van Essen D.C. 1997Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex. J. Comp. Neurol. 379, 21–47. Crossref, PubMed, ISIGoogle Scholar
    • Feller M.B, Wellis D.P, Stellwagen D, Werblin F.S& Shatz C.J. 1996Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science. 272, 1182–1187. Crossref, PubMed, ISIGoogle Scholar
    • Ferster D. 1981A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. J. Physiol. (Lond.). 311, 623–655. CrossrefGoogle Scholar
    • Fonta C, Chappert C& Imbert M. 1997N-Methyl-d-aspartate subunit R1 involvement in the postnatal organization of the primary visual cortex of Callithrix jacchus. J. Comp. Neurol. 386, 260–276. Crossref, PubMed, ISIGoogle Scholar
    • Fonta C, Chappert C& Imbert M. 2000Effect of monocular deprivation on NMDAR1 immunostaining in ocular dominance columns of the marmoset Callithrix jacchus. Vis. Neurosci. 17, 345–352. Crossref, PubMed, ISIGoogle Scholar
    • Fujita I, Tanaka K, Ito M& Cheng K. 1992Columns for visual features of objects in monkey inferotemporal cortex. Nature. 360, 343–346. Crossref, PubMed, ISIGoogle Scholar
    • Galuske R.A, Schlote W, Bratzke H& Singer W. 2000Interhemispheric asymmetries of the modular structure in human temporal cortex. Science. 289, 1946–1949. Crossref, PubMed, ISIGoogle Scholar
    • Gardner J.C& Raiten E.J. 1986Ocular dominance and disparity-sensitivity: why there are cells in the visual cortex driven unequally by the two eyes. Exp. Brain Res. 64, 505–514. Crossref, PubMed, ISIGoogle Scholar
    • Gegenfurtner K.R, Kiper D.C& Fenstemaker S.B. 1996Processing of color, form, and motion in macaque area V2. Vis. Neurosci. 13, 161–172. Crossref, PubMed, ISIGoogle Scholar
    • Gilbert C.D. 1977Laminar differences in receptive field properties of cells in cat primary visual cortex. J. Physiol. (Lond.). 268, 391–421. CrossrefGoogle Scholar
    • Gilbert C.D& Wiesel T.N. 1989Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9, 2432–2442. Crossref, PubMed, ISIGoogle Scholar
    • Girman S.V, Sauve Y& Lund R.D. 1999Receptive field properties of single neurons in rat primary visual cortex. J. Neurophysiol. 82, 301–311. Crossref, PubMed, ISIGoogle Scholar
    • Goldman P.S& Nauta W.J. 1977Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res. 122, 393–413. Crossref, PubMed, ISIGoogle Scholar
    • Goto S& Singer W. 1994Laminar and columnar organization of immunoreactivity for calcineurin, a calcium- and calmodulin-regulated protein phosphatase, in monkey striate cortex. Cereb. Cortex. 4, 636–645. Crossref, PubMed, ISIGoogle Scholar
    • Gould S.J. 1997The exaptive excellence of spandrels as a term and prototype. Proc. Natl Acad. Sci. USA. 94, 10 750–10 755. Crossref, ISIGoogle Scholar
    • Haseltine E.C, DeBruyn E.J& Casagrande V.A. 1979Demonstration of ocular dominance columns in Nissl-stained sections of monkey visual cortex following enucleation. Brain Res. 176, 153–158. Crossref, PubMed, ISIGoogle Scholar
    • Hendrickson A.E, Wilson J.R& Ogren M.P. 1978The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates. J. Comp. Neurol. 182, 123–136. Crossref, PubMed, ISIGoogle Scholar
    • Hendrickson A.E, Hunt S.P& Wu J.Y. 1981Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex. Nature. 292, 605–607. Crossref, PubMed, ISIGoogle Scholar
    • Hendry S.H& Bhandari M.A. 1992Neuronal organization and plasticity in adult monkey visual cortex: immunoreactivity for microtubule-associated protein 2. Vis. Neurosci. 9, 445–459. Crossref, PubMed, ISIGoogle Scholar
    • Hendry S.H& Calkins D.J. 1998Neuronal chemistry and functional organization in the primate visual system. Trends Neurosci. 21, 344–349. Crossref, PubMed, ISIGoogle Scholar
    • Hendry S.H& Yoshioka T. 1994A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science. 264, 575–577. Crossref, PubMed, ISIGoogle Scholar
    • Hendry S.H, Hockfield S, Jones E.G& McKay R. 1984Monoclonal antibody that identifies subsets of neurones in the central visual system of monkey and cat. Nature. 307, 267–269. Crossref, PubMed, ISIGoogle Scholar
    • Hendry S.H, Huntsman M.M, Viñuela A, Möhler H, de Blas A.L& Jones E.G. 1994GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood. J. Neurosci. 14, 2383–2401. Crossref, PubMed, ISIGoogle Scholar
    • Hetherington P.A& Swindale N.V. 1999Receptive field and orientation scatter studied by tetrode recordings in cat area 17. Vis. Neurosci. 16, 637–652. Crossref, PubMed, ISIGoogle Scholar
    • Horton J.C. 1984Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Phil. Trans. R. Soc. B. 304, 199–253. Link, ISIGoogle Scholar
    • Horton J.C& Hedley-Whyte E.T. 1984Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex. Phil. Trans. R. Soc. B. 304, 255–272. Link, ISIGoogle Scholar
    • Horton J.C& Hocking D.RAnatomical demonstration of ocular dominance columns in striate cortex of the squirrel monkey. J. Neurosci. 16, 1996a5510–5522. Crossref, PubMed, ISIGoogle Scholar
    • Horton J.C& Hocking D.RIntrinsic variability of ocular dominance column periodicity in normal macaque monkeys. J. Neurosci. 16, 1996b7228–7239. Crossref, PubMed, ISIGoogle Scholar
    • Horton J.C& Hocking D.R. 1998Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J. Neurosci. 18, 5433–5455. Crossref, PubMed, ISIGoogle Scholar
    • Horton J.C& Hubel D.H. 1981Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature. 292, 762–764. Crossref, PubMed, ISIGoogle Scholar
    • Horton J.C, Hocking D.R& Adams D.L. 2000Rapid identification of ocular dominance columns in macaques using cytochrome oxidase, Zif268, and dark-field microscopy. Vis. Neurosci. 17, 495–508. Crossref, PubMed, ISIGoogle Scholar
    • Hubel D.H. 1975An autoradiographic study of the retino-cortical projections in the tree shrew (Tupaia glis). Brain Res. 96, 41–50. Crossref, PubMed, ISIGoogle Scholar
    • Hubel D.H. 1982Exploration of the primary visual cortex, 1955–78. Nature. 299, 515–524. Crossref, PubMed, ISIGoogle Scholar
    • Hubel D.H& Livingstone M.S. 1987Segregation of form, color, and stereopsis in primate area 18. J. Neurosci. 7, 3378–3415. Crossref, PubMed, ISIGoogle Scholar
    • Hubel D.H& Wiesel T.N. 1962Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.). 160, 106–154. CrossrefGoogle Scholar
    • Hubel D.H& Wiesel T.N. 1963Shape and arrangement of columns in cat's striate cortex. J. Physiol. (Lond.). 165, 559–568. CrossrefGoogle Scholar
    • Hubel D.H& Wiesel T.N. 1968Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.). 195, 215–243. CrossrefGoogle Scholar
    • Hubel D.H& Wiesel T.N. 1969Anatomical demonstration of columns in the monkey striate cortex. Nature. 221, 747–750. Crossref, PubMed, ISIGoogle Scholar
    • Hubel D.H& Wiesel T.N. 1972Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol. 146, 421–450. Crossref, PubMed, ISIGoogle Scholar
    • Hubel D.H& Wiesel T.NSequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158, 1974a267–293. Crossref, PubMed, ISIGoogle Scholar
    • Hubel D.H& Wiesel T.NUniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol. 158, 1974b295–305. Crossref, PubMed, ISIGoogle Scholar
    • Hubel D.H& Wiesel T.N. 1977The Ferrier lecture: functional architecture of macaque monkey visual cortex. Proc. R. Soc. B. 198, 1–59. Link, ISIGoogle Scholar
    • Hubel D.H& Wiesel T.N. 1979Brain mechanisms of vision. Sci. Am. 241, 150–162. Crossref, PubMed, ISIGoogle Scholar
    • Hubel D.H, LeVay S& Wiesel T.N. 1975Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain Res. 96, 25–40. Crossref, PubMed, ISIGoogle Scholar
    • Hubel D.H, Wiesel T.N& LeVay S. 1976Functional architecture of area 17 in normal and monocularly deprived macaque monkeys. Cold Spring Harb. Symp. Quant. Biol. 40, 581–589. Crossref, PubMedGoogle Scholar
    • Hübener M, Shoham D, Grinvald A& Bonhoeffer T. 1997Spatial relationships among three columnar systems in cat area 17. J. Neurosci. 17, 9270–9284. Crossref, PubMed, ISIGoogle Scholar
    • Huberman A.D, Wang G.Y, Liets L.C, Collins O.A, Chapman B& Chalupa L.M. 2003Eye-specific retinogeniculate segregation independent of normal neuronal activity. Science. 300, 994–998. Crossref, PubMed, ISIGoogle Scholar
    • Humphrey A.L, Skeen L.C& Norton T.T. 1980Topographic organization of the orientation column system in the striate cortex of the tree shrew (Tupaia glis). II. Deoxyglucose mapping. J. Comp. Neurol. 192, 549–566. Crossref, PubMed, ISIGoogle Scholar
    • Imig T.J& Adrian H.O. 1977Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res. 138, 241–257. Crossref, PubMed, ISIGoogle Scholar
    • Imig T.J& Reale R.A. 1981Ipsilateral corticocortical projections related to binaural columns in cat primary auditory cortex. J. Comp. Neurol. 203, 1–14. Crossref, PubMed, ISIGoogle Scholar
    • Issa N.P, Trepel C& Stryker M.P. 2000Spatial frequency maps in cat visual cortex. J. Neurosci. 20, 8504–8514. Crossref, PubMed, ISIGoogle Scholar
    • Jacob F. 1977Evolution and tinkering. Science. 196, 1161–1166. Crossref, PubMed, ISIGoogle Scholar
    • Jain N, Catania K.C& Kaas J.H. 1998A histologically visible representation of the fingers and palm in primate area 3b and its immutability following long-term deafferentations. Cereb. Cortex. 8, 227–236. Crossref, PubMed, ISIGoogle Scholar
    • Jones E.G, Burton H& Porter R. 1975Commissural and cortico-cortical “columns” in the somatic sensory cortex of primates. Science. 190, 572–574. Crossref, PubMed, ISIGoogle Scholar
    • Kaas J.H, Krubitzer L.A& Johanson K.L. 1989Cortical connections of areas 17 (V-I) and 18 (V-II) of squirrels. J. Comp. Neurol. 281, 426–446. Crossref, PubMed, ISIGoogle Scholar
    • Kaschube M, Wolf F, Geisel T& Löwel S. 2002Genetic influence on quantitative features of neocortical architecture. J. Neurosci. 22, 7206–7217. Crossref, PubMed, ISIGoogle Scholar
    • Kaschube M, Wolf F, Puhlmann M, Rathjen S, Schmidt K.F, Geisel T& Lowel S. 2003The pattern of ocular dominance columns in cat primary visual cortex: intra- and interindividual variability of column spacing and its dependence on genetic background. Eur. J. Neurosci. 18, 3251–3266. Crossref, PubMed, ISIGoogle Scholar
    • Katz L.C& Crowley J.C. 2002Development of cortical circuits: lessons from ocular dominance columns. Nat. Rev. Neurosci. 3, 34–42. Crossref, PubMed, ISIGoogle Scholar
    • Katz L.C& Shatz C.J. 1996Synaptic activity and the construction of cortical circuits. Science. 274, 1133–1138. Crossref, PubMed, ISIGoogle Scholar
    • Kiper D.C, Fenstemaker S.B& Gegenfurtner K.R. 1997Chromatic properties of neurons in macaque area V2. Vis. Neurosci. 14, 1061–1072. Crossref, PubMed, ISIGoogle Scholar
    • Krubitzer L.A& Kaas J.H. 1990Cortical connections of MT in four species of primates: areal, modular, and retinotopic patterns. Vis. Neurosci. 5, 165–204. Crossref, PubMed, ISIGoogle Scholar
    • Lachica E.A, Beck P.D& Casagrande V.A. 1992Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. Proc. Natl Acad. Sci. USA. 89, 3566–3570. Crossref, PubMed, ISIGoogle Scholar
    • Land P.W, Buffer S.A& Yaskosky J.D. 1995Barreloids in adult rat thalamus: three-dimensional architecture and relationship to somatosensory cortical barrels. J. Comp. Neurol. 355, 573–588. Crossref, PubMed, ISIGoogle Scholar
    • Landisman C.E& Ts'o D.Y. 2002Color processing in macaque striate cortex: relationships to ocular dominance, cytochrome oxidase, and orientation. J. Neurophysiol. 87, 3126–3137. Crossref, PubMed, ISIGoogle Scholar
    • Lennie P, Krauskopf J& Sclar G. 1990Chromatic mechanisms in striate cortex of macaque. J. Neurosci. 10, 649–669. Crossref, PubMed, ISIGoogle Scholar
    • LeVay S& Nelson S.BColumnar organization of the visual cortex. The neural basis of visual function& Leventhal A.G. 1991pp. 266–315. Eds. Boston:CRC Press. Google Scholar
    • LeVay S& Voigt T. 1988Ocular dominance and disparity coding in cat visual cortex. Vis. Neurosci. 1, 395–414. Crossref, PubMed, ISIGoogle Scholar
    • LeVay S, Hubel D.H& Wiesel T.N. 1975The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J. Comp. Neurol. 159, 559–575. Crossref, PubMed, ISIGoogle Scholar
    • LeVay S, Stryker M.P& Shatz C.J. 1978Ocular dominance columns and their development in layer IV of the cat's visual cortex: a quantitative study. J. Comp. Neurol. 179, 223–244. Crossref, PubMed, ISIGoogle Scholar
    • LeVay S, Connolly M, Houde J& Van Essen D.C. 1985The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey. J. Neurosci. 5, 486–501. Crossref, PubMed, ISIGoogle Scholar
    • Leventhal A.G, Thompson K.G, Liu D, Zhou Y& Ault S.J. 1995Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3 and 4 of monkey striate cortex. J. Neurosci. 15, 1808–1818. Crossref, PubMed, ISIGoogle Scholar
    • Levitt J.B, Kiper D.C& Movshon J.A. 1994Receptive fields and functional architecture of macaque V2. J. Neurophysiol. 71, 2517–2542. Crossref, PubMed, ISIGoogle Scholar
    • Levitt J.B, Yoshioka T& Lund J.S. 1995Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey. Exp. Brain Res. 104, 419–430. Crossref, PubMed, ISIGoogle Scholar
    • Lia B& Olavarria J.F. 1996The distribution of corticotectal projection neurons correlates with the interblob compartment in macaque striate cortex. Vis. Neurosci. 13, 461–466. Crossref, PubMed, ISIGoogle Scholar
    • Livingstone M.S. 1996Ocular dominance columns in New World monkeys. J. Neurosci. 16, 2086–2096. Crossref, PubMed, ISIGoogle Scholar
    • Livingstone M.S& Hubel D.HAnatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 1984a309–356. Crossref, PubMed, ISIGoogle Scholar
    • Livingstone M.S& Hubel D.HSpecificity of intrinsic connections in primate primary visual cortex. J. Neurosci. 4, 1984b2830–2835. Crossref, PubMed, ISIGoogle Scholar
    • Livingstone M.S, Nori S, Freeman D.C& Hubel D.H. 1995Stereopsis and binocularity in the squirrel monkey. Vision Res. 35, 345–354. Crossref, PubMed, ISIGoogle Scholar
    • Lorento De Nó R. 1922La corteza cerebral del ratón. Trab. Lab. Invest. Biol. (Madrid). 20, 41–78. Google Scholar
    • Lorento De Nó RCerebral cortex: architecture, intracortical connections, motor projections. Physiology of the nervous system& Fulton J. 1949pp. 288–330. Eds. New York:Oxford University Press. Google Scholar
    • Lübke J, Egger V, Sakmann B& Feldmeyer D. 2000Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. J. Neurosci. 20, 5300–5311. Crossref, PubMed, ISIGoogle Scholar
    • Lund J.S, Angelucci A& Bressloff P.C. 2003Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb. Cortex. 13, 15–24. Crossref, PubMed, ISIGoogle Scholar
    • Malach R, Amir Y, Harel M& Grinvald A. 1993Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Natl Acad. Sci. USA. 90, 10 469–10 473. Crossref, ISIGoogle Scholar
    • Malach R, Schirman T.D, Harel M, Tootell R.B& Malonek D. 1997Organization of intrinsic connections in owl monkey area MT. Cereb. Cortex. 7, 386–393. Crossref, PubMed, ISIGoogle Scholar
    • Maldonado P.E, Godecke I, Gray C.M& Bonhoeffer T. 1997Orientation selectivity in pinwheel centers in cat striate cortex. Science. 276, 1551–1555. Crossref, PubMed, ISIGoogle Scholar
    • Marin O& Rubenstein J.L. 2003Cell migration in the forebrain. Annu. Rev. Neurosci. 26, 441–483. Crossref, PubMed, ISIGoogle Scholar
    • Martinez-Millán L& Holländer H. 1975Cortico-cortical projections from striate cortex of the squirrel monkey (Saimiri sciureus). A radioautographic study. Brain Res. 83, 405–417. Crossref, PubMed, ISIGoogle Scholar
    • Meister M, Wong R.O.L, Baylor D.A& Shatz C.J. 1991Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science. 252, 939–943. Crossref, PubMed, ISIGoogle Scholar
    • Miller K.D, Keller J.B& Stryker M.P. 1989Ocular dominance column development: analysis and simulation. Science. 245, 605–615. Crossref, PubMed, ISIGoogle Scholar
    • Mooney R, Penn A.A, Gallego R& Shatz C.J. 1996Thalamic relay of spontaneous retinal activity prior to vision. Neuron. 17, 863–874. Crossref, PubMed, ISIGoogle Scholar
    • Mountcastle V.B. 1957Modality and topographic properties of cat's somatic sensory cortex. J. Neurophysiol. 20, 408–434. Crossref, PubMed, ISIGoogle Scholar
    • Mountcastle V, Edelman G.M& Mountcastle V.BThe mindful brain1978pp. 7–50. Eds. Massachusetts:MIT Press. Google Scholar
    • Mountcastle V.B. 1997The columnar organization of the neocortex. Brain. 120, 701–722. Crossref, PubMed, ISIGoogle Scholar
    • Mountcastle V.B, Berman A.L& Davies P.W. 1955Topographic organization and modality representation in first somatic area of cat's cerebral cortex by method of single unit analysis. Am. J. Physiol. 183, 464. Google Scholar
    • Mountcastle V, Davies P& Berman A. 1957Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. J. Neurophysiol. 20, 374–407. Crossref, PubMed, ISIGoogle Scholar
    • Murphy E.H& Berman N. 1979The rabbit and the cat: a comparison of some features of response properties of single cells in the primary visual cortex. J. Comp. Neurol. 188, 401–427. Crossref, PubMed, ISIGoogle Scholar
    • Murphy K.M, Jones D.G& Van Sluyters R.C. 1995Cytochrome-oxidase blobs in cat primary visual cortex. J. Neurosci. 15, 4196–4208. Crossref, PubMed, ISIGoogle Scholar
    • Nelson S. 2002Cortical microcircuits: diverse or canonical. Neuron. 36, 19–27. Crossref, PubMedGoogle Scholar
    • Noctor S.C, Flint A.C, Weissman T.A, Dammerman R.S& Kriegstein A.R. 2001Neurons derived from radial glial cells establish radial units in neocortex. Nature. 409, 714–720. Crossref, PubMed, ISIGoogle Scholar
    • Ohki K, Chung S, Ch'ng Y.H, Kara P& Reid R.C. 2005Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature. 433, 597–603. Crossref, PubMed, ISIGoogle Scholar
    • O'Keefe L.P, Levitt J.B, Kiper D.C, Shapley R.M& Movshon J.A. 1998Functional organization of owl monkey lateral geniculate nucleus and visual cortex. J. Neurophysiol. 80, 594–609. Crossref, PubMed, ISIGoogle Scholar
    • Olavarria J.F& Van Essen D.C. 1997The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. Cereb. Cortex. 7, 395–404. Crossref, PubMed, ISIGoogle Scholar
    • O'Rourke N.A, Sullivan D.P, Kaznowski C.E, Jacobs A.A& McConnell S.K. 1995Tangential migration of neurons in the developing cerebral cortex. Development. 121, 2165–2176. Crossref, PubMed, ISIGoogle Scholar
    • Peterhans E& von der Heydt R. 1993Functional organization of area V2 in the alert macaque. Eur. J. Neurosci. 5, 509–524. Crossref, PubMed, ISIGoogle Scholar
    • Poggio G.F& Fischer B. 1977Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J. Neurophysiol. 40, 1392–1405. Crossref, PubMed, ISIGoogle Scholar
    • Poggio G.F, Gonzalez F& Krause F. 1988Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity. J. Neurosci. 8, 4531–4550. Crossref, PubMed, ISIGoogle Scholar
    • Polimeni, J. R., Granquist-Fraser, D., Wood, R. J. & Schwartz, E. L. 2005 Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns. Proc. Natl Acad. Sci. USA102, 4158–4163. Google Scholar
    • Powell T.P.S& Mountcastle V.B. 1959Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp. 105, 133–162. PubMedGoogle Scholar
    • Purves D, Riddle D.R& LaMantia A.S. 1992Iterated patterns of brain circuitry (or how the cortex gets its spots). Trends Neurosci. 15, 362–368. Crossref, PubMed, ISIGoogle Scholar
    • Rakic P. 1971Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 33, 471–476. Crossref, PubMed, ISIGoogle Scholar
    • Rakic P. 1977Prenatal development of the visual system in rhesus monkey. Phil. Trans. R. Soc. B. 278, 245–260. Link, ISIGoogle Scholar
    • Rakic P. 1988Specification of cerebral cortical areas. Science. 241, 170–176. Crossref, PubMed, ISIGoogle Scholar
    • Rakic P. 1995Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc. Natl Acad. Sci. USA. 92, 11 323–11 327. Crossref, ISIGoogle Scholar
    • Rakic P. 2003Developmental and evolutionary adaptations of cortical radial glia. Cereb. Cortex. 13, 541–549. Crossref, PubMed, ISIGoogle Scholar
    • Rathjen S, Schmidt K.E& Lowel S. 2002Two-dimensional analysis of the spacing of ocular dominance columns in normally raised and strabismic kittens. Exp. Brain Res. 145, 158–165. Crossref, PubMed, ISIGoogle Scholar
    • Read J.C& Cumming B.G. 2004Ocular dominance predicts neither strength nor class of disparity selectivity with random-dot stimuli in primate V1. J. Neurophysiol. 91, 1271–1281. Crossref, PubMed, ISIGoogle Scholar
    • Read H.L, Winer J.A& Schreiner C.E. 2001Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proc. Natl Acad. Sci. USA. 98, 8042–8047. Crossref, PubMed, ISIGoogle Scholar
    • Reid C.B, Liang I& Walsh C. 1995Systematic widespread clonal organization in cerebral cortex. Neuron. 15, 299–310. Crossref, PubMed, ISIGoogle Scholar
    • Reser D.H, Fishman Y.I, Arezzo J.C& Steinschneider M. 2000Binaural interactions in primary auditory cortex of the awake macaque. Cereb. Cortex. 10, 574–584. Crossref, PubMed, ISIGoogle Scholar
    • Ringach D.L, Shapley R.M& Hawken M.J. 2002Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 22, 5639–5651. Crossref, PubMed, ISIGoogle Scholar
    • Rockel A.J, Hiorns R.W& Powell T.P. 1980The basic uniformity in structure of the neocortex. Brain. 103, 221–244. Crossref, PubMed, ISIGoogle Scholar
    • Rockland K.S& Lund J.S. 1983Intrinsic laminar lattice connections in primate visual cortex. J. Comp. Neurol. 216, 303–318. Crossref, PubMed, ISIGoogle Scholar
    • Roe A.W& Ts'o D.Y. 1995Visual topography in primate V2: multiple representation across functional stripes. J. Neurosci. 15, 3689–3715. Crossref, PubMed, ISIGoogle Scholar
    • Rosenthal F, Woodbury J.W& Patton H.D. 1966Dipole characteristics of pyramidal cell activity in cat postcruciate cortex. J. Neurophysiol. 29, 612–625. Crossref, PubMed, ISIGoogle Scholar
    • Sandell J.H. 1986NADPH diaphorase histochemistry in the macaque striate cortex. J. Comp. Neurol. 251, 388–397. Crossref, PubMed, ISIGoogle Scholar
    • Shaw C, Yinon U& Auerbach E. 1975Receptive fields and response properties of neurons in the rat visual cortex. Vision Res. 15, 203–208. Crossref, PubMed, ISIGoogle Scholar
    • Shipp S& Zeki S. 1985Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature. 315, 322–325. Crossref, PubMed, ISIGoogle Scholar
    • Shipp S& Zeki S. 1989The organization of connections between areas V5 and V2 in macaque monkey visual cortex. Eur. J. Neurosci. 1, 333–354. Crossref, PubMed, ISIGoogle Scholar
    • Shipp S& Zeki S. 2002The functional organization of area V2. I. Specialization across stripes and layers. Vis. Neurosci. 19, 187–210. Crossref, PubMed, ISIGoogle Scholar
    • Sincich L.C& Blasdel G.G. 2001Oriented axon projections in primary visual cortex of the monkey. J. Neurosci. 21, 4416–4426. Crossref, PubMed, ISIGoogle Scholar
    • Sincich L.C& Horton J.CDivided by cytochrome oxidase: a map of the projections from V1 to V2 in macaques. Science. 295, 2002a1734–1737. Crossref, PubMed, ISIGoogle Scholar
    • Sincich L.C& Horton J.CPale cytochrome oxidase stripes in V2 receive the richest projection from macaque striate cortex. J. Comp. Neurol. 447, 2002b18–33. Crossref, PubMed, ISIGoogle Scholar
    • Sincich L.C& Horton J.CAn albino-like decussation error in the optic chiasm revealed by anomalous ocular dominance columns. Vis. Neurosci. 19, 2003a541–545. Crossref, ISIGoogle Scholar
    • Sincich L.C& Horton J.CIndependent projection streams from macaque striate cortex to the second visual area and middle temporal area. J. Neurosci. 23, 2003b5684–5692. Crossref, PubMed, ISIGoogle Scholar
    • Sincich L.C, Adams D.L& Horton J.C. 2003Complete flatmounting of the macaque cerebral cortex. Vis. Neurosci. 20, 663–686. Crossref, PubMed, ISIGoogle Scholar
    • Slimp J.C& Towe A.L. 1990Spatial distribution of modalities and receptive fields in sensorimotor cortex of awake cats. Exp. Neurol. 107, 78–96. Crossref, PubMed, ISIGoogle Scholar
    • Sperry R.W, Miner N& Myers R.E. 1955Visual pattern perception following subpial slicing and tantalum wire implantations in the visual cortex. J. Comp. Physiol. Psychol. 48, 50–58. Crossref, PubMed, ISIGoogle Scholar
    • Stosiek C, Garaschuk O, Holthoff K& Konnerth A. 2003In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA. 100, 7319–7324. Crossref, PubMed, ISIGoogle Scholar
    • Stryker M.P& Harris W.A. 1986Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci. 6, 2117–2133. Crossref, PubMed, ISIGoogle Scholar
    • Swindale N.V. 1990Is the cerebral cortex modular?. Trends Neurosci. 13, 487–492. Crossref, PubMed, ISIGoogle Scholar
    • Swindale N.V, Shoham D, Grinvald A, Bonhoeffer T& Hubener M. 2000Visual cortex maps are optimized for uniform coverage. Nat. Neurosci. 3, 822–826. Crossref, PubMed, ISIGoogle Scholar
    • Tamamaki N, Nakamura K, Okamoto K& Kaneko T. 2001Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci. Res. 41, 51–60. Crossref, PubMed, ISIGoogle Scholar
    • Tamura H, Sato H, Katsuyama N, Hata Y& Tsumoto T. 1996Less segregated processing of visual information in V2 than in V1 of the monkey visual cortex. Eur. J. Neurosci. 8, 300–309. Crossref, PubMed, ISIGoogle Scholar
    • Tiao Y.C& Blakemore C. 1976Functional organization in the visual cortex of the golden hamster. J. Comp. Neurol. 168, 459–481. Crossref, PubMed, ISIGoogle Scholar
    • Tootell R.B.H, Silverman M.S, De Valois R.L& Jacobs G.H. 1983Functional organization of the second cortical visual area in primates. Science. 220, 737–739. Crossref, PubMed, ISIGoogle Scholar
    • Tootell R.B, Hamilton S.L& Silverman M.S. 1985Topography of cytochrome oxidase activity in owl monkey cortex. J. Neurosci. 5, 2786–2800. Crossref, PubMed, ISIGoogle Scholar
    • Ts'o D.Y& Gilbert C.D. 1988The organization of chromatic and spatial interactions in the primate striate cortex. J. Neurosci. 8, 1712–1727. Crossref, PubMed, ISIGoogle Scholar
    • Ts'o D.Y, Roe A.W& Gilbert C.DA hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vision Res. 41, 2001a1333–1349. Crossref, PubMed, ISIGoogle Scholar
    • Ts'o D.Y, Roe A.W& Gilbert C.DA hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vision Res. 41, 2001b1333–1349. Crossref, PubMed, ISIGoogle Scholar
    • Van Hooser S.D, Heimel J.A.F, Chung S, Nelson S.B& Toth L.J. 2005Orientation selectivity without orientation maps in visual cortex of a highly visual mammal. J. Neurosci. 25, 19–28. Crossref, PubMed, ISIGoogle Scholar
    • Walsh C& Cepko C.L. 1988Clonally related cortical cells show several migration patterns. Science. 241, 1342–1345. Crossref, PubMed, ISIGoogle Scholar
    • Walsh C& Cepko C.L. 1992Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science. 255, 434–440. Crossref, PubMed, ISIGoogle Scholar
    • Wang G, Tanifuji M& Tanaka K. 1998Functional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging. Neurosci. Res. 32, 33–46. Crossref, PubMed, ISIGoogle Scholar
    • Weliky M, Bosking W.H& Fitzpatrick D. 1996A systemic map of direction preference in primary visual cortex. Nature. 379, 725–728. Crossref, PubMed, ISIGoogle Scholar
    • Welker E, Armstrong-James M, Bronchti G, Ourednik W, Gheorghita-Baechler F, Dubois R, Guernsey D.L, Van der Loos H& Neumann P.E. 1996Altered sensory processing in the somatosensory cortex of the mouse mutant barrelless. Science. 271, 1864–1867. Crossref, PubMed, ISIGoogle Scholar
    • Wiesenfeld Z& Kornel E.E. 1975Receptive fields of single cells in the visual cortex of the hooded rat. Brain Res. 94, 401–412. Crossref, PubMed, ISIGoogle Scholar
    • Wong-Riley M.T.T. 1979Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys. Brain Res. 162, 201–217. Crossref, PubMed, ISIGoogle Scholar
    • Wong-Riley M.T. 1989Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci. 12, 94–101. Crossref, PubMed, ISIGoogle Scholar
    • Wong-Riley M& Carroll E.W. 1984Effect of impulse blockage on cytochrome oxidase activity in monkey visual system. Nature. 307, 262–264. Crossref, PubMed, ISIGoogle Scholar
    • Wong-Riley M, Anderson B, Liebl W& Huang Z. 1998Neurochemical organization of the macaque striate cortex: correlation of cytochrome oxidase with Na+K+ATPase, NADPH-diaphorase, nitric oxide synthase, and N-Methyl-d-aspartate receptor subunit 1. Neuroscience. 83, 1025–1045. Crossref, PubMed, ISIGoogle Scholar
    • Woolsey T.A& Van Der Loos H. 1970The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex: the description of a cortical field composed of cytoarchitectonic units. Brain Res. 17, 205–242. Crossref, PubMed, ISIGoogle Scholar
    • Woolsey T.A, Welker C& Schwartz R.H. 1975Comparative anatomical studies of the SmL face cortex with special reference to the occurrence of “barrels” in layer IV. J. Comp. Neurol. 164, 79–94. Crossref, PubMed, ISIGoogle Scholar
    • Xiao Y, Wang Y& Felleman D.J. 2003A spatially organized representation of colour in macaque cortical area V2. Nature. 421, 535–539. Crossref, PubMed, ISIGoogle Scholar
    • Xu X, Bosking W, Sary G, Stefansic J, Shima D& Casagrande V. 2004Functional organization of visual cortex in the owl monkey. J. Neurosci. 24, 6237–6247. Crossref, PubMed, ISIGoogle Scholar
    • Yabuta N.H& Callaway E.M. 1998Functional streams and local connections of layer 4C neurons in primary visual cortex of the macaque monkey. J. Neurosci. 18, 9489–9499. Crossref, PubMed, ISIGoogle Scholar
    • Yoshioka T& Dow B.M. 1996Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex. Behav. Brain Res. 76, 71–88. Crossref, PubMed, ISIGoogle Scholar
    • Yoshioka T, Levitt J.B& Lund J.S. 1994Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: anatomy of interlaminar projections. Vis. Neurosci. 11, 467–489. Crossref, PubMed, ISIGoogle Scholar
    • Yoshioka T, Blasdel G.G, Levitt J.B& Lund J.S. 1996Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. Cereb. Cortex. 6, 297–310. Crossref, PubMed, ISIGoogle Scholar
    • Zeki S& Shipp S. 1989Modular connections between areas V2 and V4 of macaque monkey visual cortex. Eur. J. Neurosci. 1, 494–506. Crossref, PubMed, ISIGoogle Scholar