Philosophical Transactions of the Royal Society B: Biological Sciences
Restricted access

Mapping brains without coordinates

    Brain mapping has evolved considerably over the last century. While most emphasis has been placed on coordinate-based spatial atlases, coordinate-independent parcellation-based mapping is an important technique for accessing the multitude of structural and functional data that have been reported from invasive experiments, and provides for flexible and efficient representations of information. Here, we provide an introduction to motivations, concepts, techniques and implications of coordinate-independent mapping of microstructurally or functionally defined brain structures. In particular, we explain the problems of constructing mapping paths and finding adequate heuristics for their evaluation. We then introduce the three auxiliary concepts of acronym-based mapping (AM), of a generalized hierarchy (GM ontology), and of a topographically oriented regional map (RM) with adequate granularity for mapping between individual brains with different cortical folding and between humans and non-human primates. Examples from the CoCoMac database of primate brain connectivity demonstrate how these concepts enhance coordinate-independent mapping based on published relational statements. Finally, we discuss the strengths and weaknesses of spatial coordinate-based versus coordinate-independent microstructural brain mapping and show perspectives for a wider application of parcellation-based approaches in the integration of multi-modal structural, functional and clinical data.

    References

    • Amunts K, Malikovic A, Mohlberg H, Schormann T& Zilles K. 2000Brodmann's areas 17 and 18 brought into stereotaxic space—where and how variable?. NeuroImage. 11, 66–84.doi:10.1006/nimg.1999.0516. . Crossref, PubMed, ISIGoogle Scholar
    • Ashburner J& Friston K.J. 2000Voxel-based morphometry—the methods. NeuroImage. 11, 805–821. Crossref, PubMed, ISIGoogle Scholar
    • Barbas H. 1988Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276, 313–342. Crossref, PubMed, ISIGoogle Scholar
    • Barbas H& Pandya D. N. 1987Architecture and frontal cortical connections of the premotor cortex (area 6) in the Rhesus monkey. J. Comp. Neurol. 256, 211–228. Crossref, PubMed, ISIGoogle Scholar
    • Barnes C.L& Pandya D.N. 1992Efferent cortical connections of multimodal cortex of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol. 318, 222–244. Crossref, PubMed, ISIGoogle Scholar
    • Bota M& Arbib M.A. 2004Integrating databases and expert systems for the analysis of brain structures: connections, similarities, and homologies. Neuroinformatics. 2, 19–58. Crossref, PubMed, ISIGoogle Scholar
    • Boussaoud D, Desimone R& Ungerleider L.G. 1991Visual topography of area TEO in the macaque. J. Comp. Neurol. 306, 554–575. Crossref, PubMed, ISIGoogle Scholar
    • Bowden D.M& Dubach M. 2003Neuronames 2002. Neuroinformatics. 1, 43–60. Crossref, PubMed, ISIGoogle Scholar
    • Brett M, Johnsrude I.S& Owen A.S. 2002The problem of functional localization in the human brain. Nat. Rev. Neurosci. 3, 243–249. Crossref, PubMed, ISIGoogle Scholar
    • Brodmann K. 1903Beiträge zur histologischen Lokalisation der Großhirnrinde. I. Mitteilung: Die Regio Rolandica. J. Psychol. Neurol. 2, 79–107. Google Scholar
    • Brodmann K. 1905Beiträge zur histologischen Lokalisation der Großhirnrinde. III. Mitteilung: Die Rindenfelder der niederen Affen. J. Psychol. Neurol. 4, 177–226. Google Scholar
    • Brodmann KVergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. 1909Leipzig:Barth. Google Scholar
    • Campbell W.WHistological studies on the localisation of cerebral function. 1905Cambridge:Cambridge University Press. Google Scholar
    • Crespo-Facorro B, Kim J, Andreasen N.C, Spinks R, O'Leary D.S, Bockholt H.J, Harris G& Magnotta V.A. 2000Cerebral cortex: a topographic segmentation method using magnetic resonance imaging. Psychiatry Res. 100, 97–126. Crossref, PubMed, ISIGoogle Scholar
    • Cusick C.G, Seltzer B, Cola M& Griggs E. 1995Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex. J. Comp. Neurol. 360, 513–535. Crossref, PubMed, ISIGoogle Scholar
    • Desimone R& Ungerleider L.G. 1986Multiple visual areas in the caudal superior temporal sulcus of the macaque. J. Comp. Neurol. 248, 164–189. Crossref, PubMed, ISIGoogle Scholar
    • Duong T.Q, Kim D.S, Ugurbil K& Kim S.G. 2001Localized cerebral blood flow response at submillimeter columnar resolution. Proc. Natl Acad. Sci. USA. 98, 10 904–10 909. Crossref, ISIGoogle Scholar
    • Eickhoff S, Walters N.B, Schleicher A, Kril J, Egan G.F, Zilles K, Watson J.D& Amunts K. 2004High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum. Brain Mapp. 24, 206–215.(ePublication ahead of print). Crossref, ISIGoogle Scholar
    • Eickhoff S.B, Stephan K.E, Mohlberg H, Grefkes C, Fink G.R, Amunts K& Zilles KA new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage (In press.). ISIGoogle Scholar
    • Felleman D.J& Van Essen D.C. 1991Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex. 1, 1–47. Crossref, PubMed, ISIGoogle Scholar
    • Galletti C, Gamberini M, Kutz D.F, Baldinotti I& Fattori PThe relationship between V6 and PO in macaque extrastriate cortex. Eur. J. Neurosci (In press.). ISIGoogle Scholar
    • Gaser C& Schlaug G. 2003Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245. Crossref, PubMed, ISIGoogle Scholar
    • Gattass R& Gross C.G. 1981Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. J. Neurophysiol. 46, 621–638. Crossref, PubMed, ISIGoogle Scholar
    • Geyer S, Schormann T, Mohlberg H& Zilles K. 2000Areas 3a, 3b, and 1 of human primary somatosensory cortex. Part 2. Spatial normalization to standard anatomical space.. NeuroImage. 11, 684–696.doi:10.1006/nimg.2000.0548. . Crossref, PubMed, ISIGoogle Scholar
    • Gorin F, Hogarth M& Gertz M. 2001The challenges and rewards of integrating diverse neuroscience information. Neuroscientist. 7, 18–27. Crossref, PubMed, ISIGoogle Scholar
    • Hof P.R& Morrison J.H. 1995Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J. Comp. Neurol. 352, 161–186. Crossref, PubMed, ISIGoogle Scholar
    • Huk A.C, Dougherty R.F& Heeger D.J. 2002Retinotopy and functional subdivision of human areas MT and MST.. J. Neurosci. 22, 7195–7205. Crossref, PubMed, ISIGoogle Scholar
    • Johansen-Berg H, Behrens T.E, Sillery E, Ciccarelli O, Thompson A.J, Smith S.M& Matthews P.M. 2004Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus.. Cereb. Cortex. 15, 31–39.doi:10.1093/cercor/bhh105. . Crossref, PubMed, ISIGoogle Scholar
    • Koslow S.H& Hirsch M.D. 2004Celebrating a decade of neuroscience databases. Looking to the future of high-throughput data analysis, data integration, and discovery neuroscience. Neuroinformatics. 2, 267–269. Crossref, PubMed, ISIGoogle Scholar
    • Kötter R. 2004Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics. 2, 127–144. Crossref, PubMed, ISIGoogle Scholar
    • Lancaster J.L, et al.2000Automated Talairach Atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131. Crossref, PubMed, ISIGoogle Scholar
    • Lewis J.W& Van Essen D.C. 2000Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428, 79–111. Crossref, PubMed, ISIGoogle Scholar
    • Luppino G, Matelli M, Camarda R.M, Gallese V& Rizzolatti G. 1991Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J. Comp. Neurol. 311, 463–482. Crossref, PubMed, ISIGoogle Scholar
    • Mauss T. 1908Die faserarchitektonische Gliederung der Großhirnrinde bei niederen Affen. J. Psychol. Neurol. 13, 263–325. Google Scholar
    • Mazziotta J, et al.2001A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM).. Phil. Trans. R. Soc. B. 356, 1293–1322.doi:10.1098/rstb.2001.0915. . Link, ISIGoogle Scholar
    • Meynert TDer Bau der Großhirnrinde und seine örtlichen Verschiedenheiten, nebst einem pathologisch-anatomischen Corollarium. 1868Leipzig:Engelmann. Google Scholar
    • Mitz A.R& Wise S.P. 1987The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J. Neurosci. 7, 1010–1021. Crossref, PubMed, ISIGoogle Scholar
    • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T& Zilles K. 2001Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system.. NeuroImage. 13, 684–701.doi:10.1006/nimg.2000.0715. . Crossref, PubMed, ISIGoogle Scholar
    • Norden J.J& Kaas J.H. 1978The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase. J. Comp. Neurol. 182, 707–725. Crossref, PubMed, ISIGoogle Scholar
    • Olszewski JThe thalamus of Macaca mulatta. 1952Basel:Karger. Google Scholar
    • Paxinos G, Huang X.-F& Toga A.WThe rhesus monkey brain in stereotaxic coordinates. 2000San Diego, CA:Academic. Google Scholar
    • Petrides M& Pandya D.NComparative architectonic analysis of the human and macaque frontal cortex. Handbook of neuropsychology, vol. 9, ch. 2, Boller F& Grafman J. 1994. Google Scholar
    • Rademacher J, Caviness V.S, Steinmetz H& Galaburda A.M. 1993Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb. Cortex. 3, 313–329. Crossref, PubMed, ISIGoogle Scholar
    • Rademacher J, Bürgel U& Zilles K. 2002Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. NeuroImage. 17, 142–160. Crossref, PubMed, ISIGoogle Scholar
    • Roland P, et al.2001A database generator for human brain imaging. Trends Neurosci. 24, 562–564. Crossref, PubMed, ISIGoogle Scholar
    • Scannell J.W, Blakemore C& Young M.P. 1995Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15, 1463–1483. Crossref, PubMed, ISIGoogle Scholar
    • Scannell J.W, Burns G.A.P.C, Hilgetag C.C, O'Neil M.A& Young M.P. 1999The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex. 9, 277–299. Crossref, PubMed, ISIGoogle Scholar
    • Schleicher A, Amunts K, Geyer S, Morosan P& Zilles K. 1999Observer-independent method for microstructural parcellation of cerebral cortex: a quantitative approach to cytoarchitectonics. NeuroImage. 9, 165–177. Crossref, PubMed, ISIGoogle Scholar
    • Seltzer B& Pandya D.N. 1978Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149, 1–24. Crossref, PubMed, ISIGoogle Scholar
    • Sereno M.I, Dale A.M, Reppas J.B, Kwong K.K, Belliveau J.W, Brady T.J, Rosen B.R& Tootell R.B. 1995Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 268, 889–893. Crossref, PubMed, ISIGoogle Scholar
    • Sowell E.R, Peterson B.S, Thompson P.M, Welcome S.E, Henkenius A.L& Toga A.W. 2003Mapping cortical change across the human life span.. Nat. Neurosci. 6, 309–315.doi:10.1038/nn1008. . Crossref, PubMed, ISIGoogle Scholar
    • Srinivas P.R, Gusfield D, Mason O, Gertz M, Hogarth M, Stone J, Jones E.G& Gorin F.A. 2003Neuroanatomical term generation and comparison between two terminologies. Neuroinformatics. 1, 177–192. Crossref, PubMed, ISIGoogle Scholar
    • Stephan K.E, Zilles K& Kötter R. 2000Coordinate-independent mapping of structural and functional cortical data by objective relational transformation (ORT). Phil. Trans. R. Soc. B. 355, 37–54. Link, ISIGoogle Scholar
    • Stephan K.E, Kamper L, Bozkurt A, Burns G.A.P.C, Young M.P& Kötter R. 2001CoCoMac: advanced database methodology for the collation of connectivity data on the macaque brain (CoCoMac).. Phil. Trans. R. Soc. B. 356, 1159–1186.doi:10.1098/rstb.2001.0908. . Link, ISIGoogle Scholar
    • Talairach J& Tournoux PCo-planar stereotaxic atlas of the human brain. 3-D proportional system: an approach to cerebral imaging. 1988Stuttgart:Thieme. Google Scholar
    • Tanaka K, Hikosaka K, Saito H, Yukie M, Fukada Y& Iwai E. 1986Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J. Neurosci. 6, 134–144. Crossref, PubMed, ISIGoogle Scholar
    • Thompson P.M, Schwartz C, Lin R.T, Khan A.A& Toga A.W. 1996Three-dimensional statistical analysis of sulcal variability in the human brain. J. Neurosci. 16, 4261–4274. Crossref, PubMed, ISIGoogle Scholar
    • Thompson P.M, et al.2001Genetic influences on brain structure.. Nat. Neurosci. 4, 1253–1258.doi:10.1038/nn758. . Crossref, PubMed, ISIGoogle Scholar
    • Toga A.W& Thompson P.M. 2001Maps of the brain. New Anat. 265, 37–53. Crossref, ISIGoogle Scholar
    • Ungerleider L.G& Desimone R. 1986Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2. J. Comp. Neurol. 248, 147–163. Crossref, PubMed, ISIGoogle Scholar
    • Ungerleider L.G& Mishkin M. 1979The striate projection zone in the superior temporal sulcus of Macaca mulatta: location and topographic organization. J. Comp. Neurol. 188, 347–366. Crossref, PubMed, ISIGoogle Scholar
    • Van Essen D.C. 2004Surface-based approaches to spatial localization and registration in primate cerebral cortex.. NeuroImage. 23, S97–S107.doi:10.1016/j.neuroimage.2004.07.024. . Crossref, PubMed, ISIGoogle Scholar
    • Van Essen D.C, Maunsell J.H& Bixby J.L. 1981The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. J. Comp. Neurol. 199, 293–326. Crossref, PubMed, ISIGoogle Scholar
    • Van Essen D.C, Drury H.A, Dickson J, Harwell J, Hanlon D& Anderson C.H. 2001An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 443–459. Crossref, PubMed, ISIGoogle Scholar
    • Van Essen D.C, Lewis J.W, Drury H.A, Hadjikhani N, Tootell R.B.H, Bakircioglu M& Miller M.I. 2001Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res. 41, 1359–1378. Crossref, PubMed, ISIGoogle Scholar
    • Van Horn J.D, Grethe J.S, Kostelec P, Woodward J.B, Aslam J.A, Rus D, Rockmore D& Gazzaniga M.S. 2001The functional magnetic resonance imaging data center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. Phil. Trans. R. Soc. B . 356, 1323–1339. Link, ISIGoogle Scholar
    • Vogt O. 1903Zur anatomischen Gliederung des cortex cerebri. J. Psychol. Neurol. 2, 160–180. Google Scholar
    • Vogt C& Vogt O. 1919Ergebnisse unserer hirnforschung. 1.-4. Mitteilung. J. Psychol. Neurol. 25, 279–461. Google Scholar
    • von Bonin G& Bailey PThe neocortex of Macaca mulatta. 1947Urbana:University of Illinois Press. Google Scholar
    • Walker E.A. 1940A cytoarchitectural study of the prefrontal area of macaque monkey. J. Comp. Neurol. 73, 59–86. CrossrefGoogle Scholar
    • Wanke E& Kötter ROriented paths in mixed graphs. Proceedings of the 15th International Symposium on Algorithms and Computation (ISAAC). Lecture notes in computer science, Fleischer R& Trippen G. 2004.2004pp. 17–58. Eds. Berlin:Springer. Google Scholar
    • Whitmore ITerminologia anatomica—international anatomical terminology, federative committee of anatomical terminology (FCAT). 1998Stuttgart:Thieme. Google Scholar
    • Yeterian E.H& Pandya D.N. 1991Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. J. Comp. Neurol. 312, 43–67. Crossref, PubMed, ISIGoogle Scholar
    • Young M.P. 1993The organization of neural systems in the primate cerebral cortex. Proc. R. Soc. B. 252, 13–18. Link, ISIGoogle Scholar
    • Zilles KArchitecture of the human cerebral cortex. Regional and laminar organization. The human nervous system, Paxinos G& Mai J.K2nd edn2004pp. 997–1055. Eds. San Diego, CA:Elsevier. CrossrefGoogle Scholar