Philosophical Transactions of the Royal Society B: Biological Sciences

    A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral–caudal axis and a dorsal–ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal–ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information.

    References

    • Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings H.B.M& Zilles K. 1999Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341. Crossref, PubMed, ISIGoogle Scholar
    • Andersen R& Gnadt J.WRole of posterior parietal cortex in saccadic eye movements. The neurobiology of saccadic eye movements, Wurtz R& Goldberg M. 1989pp. 315–335. Eds. Amsterdam:Elsevier. Google Scholar
    • Andersen R.A, Asanuma C, Essick G& Siegel R.M. 1990Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296, 65–113.doi:10.1002/cne.902960106. Crossref, PubMed, ISIGoogle Scholar
    • Bachevalier J& Mishkin M. 1986Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav. Brain Res. 20, 249–261.doi:10.1016/0166-4328(86)90225-1. Crossref, PubMed, ISIGoogle Scholar
    • Bailey P& Bonin GThe isocortex of man. 1951Urbana:University of Illinois Press. Google Scholar
    • Baillarger J. 1840Recherches sur la structure de la couche corticale des circonvolutions du cerveau. Mém. Acad. R. Méd. 8, 149–183. Google Scholar
    • Barbas H. 1988Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276, 313–342.doi:10.1002/cne.902760302. Crossref, PubMed, ISIGoogle Scholar
    • Barbas H& Mesulam M.-M. 1981Organization afferent input to subdivisions of area 8 in the rhesus monkey. J. Comp. Neurol. 200, 407–431.doi:10.1002/cne.902000309. Crossref, PubMed, ISIGoogle Scholar
    • Barbas H& Pandya D.N. 1989Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375.doi:10.1002/cne.902860306. Crossref, PubMed, ISIGoogle Scholar
    • Betz W. 1874Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medicinischen Wissenschaften578–580.(see also pp. 595–599). Google Scholar
    • Brodmann K. 1905Beitraege zur histologischen Lokalisation der Grosshirnrinde. III. Mitteilung: Die Rindenfelder der niederen Affen. J. Psychol. Neurol. (Lzp). 4, 177–226. Google Scholar
    • Brodmann K. 1908Beitraege zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung: Die Cortexgliederung des Menschen. J. Psychol. Neurol. (Lzp). 10, 231–246T. Google Scholar
    • Brodmann KVergleichende localisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. 1909Leipzig:Barth. Google Scholar
    • Bruce C.J, Goldberg M.E, Fushnell M.C& Stanton G.B. 1985Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734. Crossref, PubMed, ISIGoogle Scholar
    • Campbell A.WHistological studies on the localisation of cerebral function. 1905Cambridge:Cambridge University Press. Google Scholar
    • Carmichael S.T& Price J.L. 1995Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664.doi:10.1002/cne.903630409. Crossref, PubMed, ISIGoogle Scholar
    • Cavada C& Goldman-Rakic P.S. 1989Posterior parietal cortex in rhesus monkey. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445.doi:10.1002/cne.902870403. Crossref, PubMed, ISIGoogle Scholar
    • Duncan J& Owen A.M. 2000Common regions of the human frontal recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483.doi:10.1016/S0166-2236(00)01633-7. Crossref, PubMed, ISIGoogle Scholar
    • Duffy F& Burchfield J. 1971Somatosensory system: organizational hierarchy from single units in monkey area 5. Science. 172, 273–275. Crossref, PubMed, ISIGoogle Scholar
    • Economo C& Koskinas G.NDie cytoarchitektonik der hirnrinde des erwachsenen menschen. 1925Wien:Springer. Google Scholar
    • Fuster J.MThe prefrontal cortex. Anatomy, physiology, and neuropsychology of the frontal lobe. 1989New York:Raven Press. Google Scholar
    • Halsband U& Passingham R. 1982The role of premotor and parietal cortex in the direction of action. Brain Res. 240, 368–372.doi:10.1016/0006-8993(82)90239-6. Crossref, PubMed, ISIGoogle Scholar
    • He S.Q, Dum R.P& Strick P.L. 1993Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J. Neurosci. 13, 952–980. Crossref, PubMed, ISIGoogle Scholar
    • Kostopoulos P& Petrides M. 2003The mid-ventrolateral prefrontal cortex: insights into its role in memory retrieval. Eur. J. Neurosci. 17, 1489–1497.doi:10.1046/j.1460-9568.2003.02574.x. Crossref, PubMed, ISIGoogle Scholar
    • Lacquaniti F, Guigon E, Bianchi L, Ferraina S& Caminiti R. 1995Representing spatial information for limb movement: role of area 5 in the monkey. Cereb. Cortex. 5, 391–409. Crossref, PubMed, ISIGoogle Scholar
    • Lewis B.W. 1881Researches on the comparative structure of the cortex cerebri. Phil. Trans. R. Soc. Lond. 171, 35–64. LinkGoogle Scholar
    • Lewis B.W& Clarke H. 1878The cortical lamination of the motor area of the brain. Proc. R. Soc. Lond. 27, 38–49. LinkGoogle Scholar
    • Luria A.RFrontal-lobe syndromes. Handbook of clinical neurology, Vinken P.J& Bruyn G.W vol. 21969pp. 725–757. Eds. Amsterdam:North Holland. Google Scholar
    • Matelli M, Luppino G& Rizzolatti G. 1985Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav. Brain Res. 18, 125–136.doi:10.1016/0166-4328(85)90068-3. Crossref, PubMed, ISIGoogle Scholar
    • Meynert T. 1867Der Bau der Grosshirnrinde und seine ortlichen Verschiedenheiten, nebst einem pathologisch–anatomischen Corollarium. Vierteljahresschrift für Psychiatrie77–93.(see also pp. 198–217). Google Scholar
    • Meynert TA clinical treatise on diseases of the fore-brain based upon a study of its structure, functions, and nutrition. Part I. The anatomy, physiology, and chemistry of the brain. 1885New York:G.P. Putnam's Sons. Google Scholar
    • Milner B. 1972Disorders of learning and memory after temporal lobe lesions in man. Clin. Neurosurg. 19, 421–446. Crossref, PubMedGoogle Scholar
    • Mishkin M. 1982A memory system in the monkey. Phil. Trans. R. Soc. B. 298, 85–95. Link, ISIGoogle Scholar
    • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T& Zilles K. 2001Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage. 13, 684–701.doi:10.1006/nimg.2000.0715. Crossref, PubMed, ISIGoogle Scholar
    • Morris R, Pandya D.N& Petrides MFiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J. Comp. Neurol. 407, 1999a183–192. Crossref, PubMed, ISIGoogle Scholar
    • Morris R, Petrides M& Pandya D.NArchitecture and connections of retrosplenial area 30 in the rhesus monkey (Macaca mulatta). Eur. J. Neurosci. 11, 1999b2506–2518.doi:10.1046/j.1460-9568.1999.00672.x. Crossref, PubMed, ISIGoogle Scholar
    • Mountcastle V.B, Lynch J.C, Georgopoulos A, Sakata H& Acuna C. 1975Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908. Crossref, PubMed, ISIGoogle Scholar
    • Owen A.M. 1997The functional organization of working memory processes within the human lateral frontal cortex: The contribution of functional neuroimaging. Eur. J. Neurosci. 9, 1329–1339. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M. 1982Motor conditional associative-learning after selective prefrontal lesions in the monkey. Behav. Brain Res. 5, 407–413.doi:10.1016/0166-4328(82)90044-4. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M. 1985Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101.doi:10.1016/0166-4328(85)90085-3. Crossref, PubMed, ISIGoogle Scholar
    • Petrides MConditional learning and the primate frontal cortex. The frontal lobes revisited& Perecman E. 1987pp. 91–108. Eds. New York:IRBN Press. Google Scholar
    • Petrides M. 1991Monitoring of selections of visual stimuli and the primate frontal cortex. Proc. R. Soc. B. 246, 293–298. Link, ISIGoogle Scholar
    • Petrides MFrontal lobes and working memory: evidence from investigations of the effects of cortical excisions in nonhuman primates. Handbook of neuropsychology, Boller F& Grafman J vol. 91994pp. 59–82. Eds. Amsterdam:Elsevier. Google Scholar
    • Petrides M. 1996Specialized systems for the processing of mnemonic information within the primate frontal cortex. Phil. Trans. R. Soc. B. 351, 1455–1462. Link, ISIGoogle Scholar
    • Petrides MDissociable roles of mid-dorsolateral and anterior inferotemporal cortex in visual working memory. J. Neurosci. 20, 2000a7496–7503. Crossref, PubMed, ISIGoogle Scholar
    • Petrides MMapping prefrontal cortical systems for the control of cognition. Brain mapping: the systems, Toga A.W& Mazziotta J.C. 2000bpp. 159–176. Eds. San Diego:Academic Press. Google Scholar
    • Petrides MThe rostral–caudal axis of cognitive control within the lateral frontal cortex. From monkey brain to human brain, Dehaene S, Duhamel G.R, Hauser M& Rizzolatti G. 2005Cambridge, MA:MIT Press. Google Scholar
    • Petrides M& Pandya D.N. 1984Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116.doi:10.1002/cne.902280110. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M& Pandya D.NComparative architectonic analysis of the human and the macaque frontal cortex. Handbook of neuropsychology, Boller F& Grafman J vol. 91994pp. 17–58. Eds. Amsterdam:Elsevier. Google Scholar
    • Petrides M& Pandya D.N. 1999Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036.doi:10.1046/j.1460-9568.1999.00518.x. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M& Pandya D.N. 2002Comparative cytoarchitectonic analysis in the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 16, 291–310.doi:10.1046/j.1460-9568.2001.02090.x. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M& Pandya D.NThe frontal cortex. The human nervous system, Paxinos G& Mai J.K2nd edn2004pp. 950–972. Eds. San Diego:Elsevier Academic Press.ch 25. CrossrefGoogle Scholar
    • Petrides M, Alivisatos B& Frey S. 2002Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proc. Natl Acad. Sci. USA. 99, 5649–5654.doi:10.1073/pnas.072092299. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M, Alivisatos B& Evans A.C. 1995Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proc. Natl Acad. Sci. USA. 92, 5803–5807. Crossref, PubMed, ISIGoogle Scholar
    • Poldrack R.A, Wagner A.D, Prull M.W, Desmond J.E, Glover G.H& Gabrieli J.D.E. 1999Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage. 10, 15–35.doi:10.1006/nimg.1999.0441. Crossref, PubMed, ISIGoogle Scholar
    • Postle B.R& D'Esposito M. 2000Evaluating models of the topographical organization of working memory function in frontal cortex with event-related fMRI study. Psychobiology. 28, 132–145. Google Scholar
    • Preuss T.M& Goldman-Rakic P.S. 1991Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate galago and the anthropoid primate macaca. J. Comp. Neurol. 310, 429–474.doi:10.1002/cne.903100402. Crossref, PubMed, ISIGoogle Scholar
    • Rizzolatti G& Luppino G. 2001The cortical motor system. Neuron. 31, 889–901.doi:10.1016/S0896-6273(01)00423-8. Crossref, PubMed, ISIGoogle Scholar
    • Robbins T.W. 1996Dissociating executive functions of the prefrontal cortex. Phil. Trans. R. Soc. B. 351, 1463–1470. Link, ISIGoogle Scholar
    • Sakata H, Takaoka Y, Kawarasaki A& Shibutani H. 1973Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res. 64, 85–102.doi:10.1016/0006-8993(73)90172-8. Crossref, PubMed, ISIGoogle Scholar
    • Sanides FDie architektonik des menschlichen stirnhirns. 1962Berlin:Springer. Google Scholar
    • Sarkissov S.A, Filimonoff I.N, Kononowa E.P, Preobraschenskaja I.S& Kukuew L.AAtlas of the cytoarchitectonics of the human cerebral cortex. 1955Moscow:Medgiz. Google Scholar
    • Schall J.D, Morel A, King D.J& Bullier J. 1995Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487. Crossref, PubMed, ISIGoogle Scholar
    • Shallice T& Burgess D.F. 1996The domain of supervisory processes and temporal organisation of behaviour. Phil. Trans. R. Soc. B. 351, 1405–1411. Link, ISIGoogle Scholar
    • Smith G.E. 1907A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J. Anat. Physiol. 41, 237–254. PubMedGoogle Scholar
    • Stanton G.B, Deng S.-Y, Goldberg M.E& McMullen N.T. 1989Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys. J. Comp. Neurol. 282, 415–427.doi:10.1002/cne.902820308. Crossref, PubMed, ISIGoogle Scholar
    • Stuss D.T& Benson D.FThe frontal lobes. 1986New York:Raven Press. Google Scholar
    • Squire L.R& Zola-Morgan S. 1991The medial temporal lobe memory system. Science. 253, 1380–1386. Crossref, PubMed, ISIGoogle Scholar
    • Talairach J& Tournoux PCo-planar stereotaxic atlas of the human brain. 1988Stuttgart:Thieme. Google Scholar
    • Vicq d'Azyr FTraité d'anatomie et de physiologie. 1786F.A. Didot:Paris. Google Scholar
    • Vogt C& Vogt O. 1919Allgemeinere Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25, 279–462. Google Scholar
    • Walker A.E. 1940A cytoarchitectural study of the prefrontal area of the macaque monkey. J. Comp. Neurol. 73, 59–86.doi:10.1002/cne.900730106. CrossrefGoogle Scholar