Lateral prefrontal cortex: architectonic and functional organization
Abstract
A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral–caudal axis and a dorsal–ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal–ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information.
References
Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings H.B.M& Zilles K . 1999Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341. Crossref, PubMed, ISI, Google ScholarAndersen R& Gnadt J.W Role of posterior parietal cortex in saccadic eye movements. The neurobiology of saccadic eye movements, Wurtz R& Goldberg M . 1989pp. 315–335. Eds. Amsterdam:Elsevier. Google ScholarAndersen R.A, Asanuma C, Essick G& Siegel R.M . 1990Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296, 65–113.doi:10.1002/cne.902960106. Crossref, PubMed, ISI, Google ScholarBachevalier J& Mishkin M . 1986Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav. Brain Res. 20, 249–261.doi:10.1016/0166-4328(86)90225-1. Crossref, PubMed, ISI, Google ScholarBaillarger J . 1840Recherches sur la structure de la couche corticale des circonvolutions du cerveau. Mém. Acad. R. Méd. 8, 149–183. Google ScholarBarbas H . 1988Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276, 313–342.doi:10.1002/cne.902760302. Crossref, PubMed, ISI, Google ScholarBarbas H& Mesulam M.-M . 1981Organization afferent input to subdivisions of area 8 in the rhesus monkey. J. Comp. Neurol. 200, 407–431.doi:10.1002/cne.902000309. Crossref, PubMed, ISI, Google ScholarBarbas H& Pandya D.N . 1989Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375.doi:10.1002/cne.902860306. Crossref, PubMed, ISI, Google ScholarBetz W . 1874Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medicinischen Wissenschaften578–580.(see also pp. 595–599). Google ScholarBrodmann K . 1905Beitraege zur histologischen Lokalisation der Grosshirnrinde. III. Mitteilung: Die Rindenfelder der niederen Affen. J. Psychol. Neurol. (Lzp). 4, 177–226. Google ScholarBrodmann K . 1908Beitraege zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung: Die Cortexgliederung des Menschen. J. Psychol. Neurol. (Lzp). 10, 231–246T. Google ScholarBrodmann K Vergleichende localisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. 1909Leipzig:Barth. Google ScholarBruce C.J, Goldberg M.E, Fushnell M.C& Stanton G.B . 1985Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734. Crossref, PubMed, ISI, Google ScholarCampbell A.W Histological studies on the localisation of cerebral function. 1905Cambridge:Cambridge University Press. Google ScholarCarmichael S.T& Price J.L . 1995Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664.doi:10.1002/cne.903630409. Crossref, PubMed, ISI, Google ScholarCavada C& Goldman-Rakic P.S . 1989Posterior parietal cortex in rhesus monkey. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445.doi:10.1002/cne.902870403. Crossref, PubMed, ISI, Google ScholarDuncan J& Owen A.M . 2000Common regions of the human frontal recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483.doi:10.1016/S0166-2236(00)01633-7. Crossref, PubMed, ISI, Google ScholarDuffy F& Burchfield J . 1971Somatosensory system: organizational hierarchy from single units in monkey area 5. Science. 172, 273–275. Crossref, PubMed, ISI, Google ScholarEconomo C& Koskinas G.N Die cytoarchitektonik der hirnrinde des erwachsenen menschen. 1925Wien:Springer. Google ScholarFuster J.M The prefrontal cortex. Anatomy, physiology, and neuropsychology of the frontal lobe. 1989New York:Raven Press. Google ScholarHalsband U& Passingham R . 1982The role of premotor and parietal cortex in the direction of action. Brain Res. 240, 368–372.doi:10.1016/0006-8993(82)90239-6. Crossref, PubMed, ISI, Google ScholarHe S.Q, Dum R.P& Strick P.L . 1993Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J. Neurosci. 13, 952–980. Crossref, PubMed, ISI, Google ScholarKostopoulos P& Petrides M . 2003The mid-ventrolateral prefrontal cortex: insights into its role in memory retrieval. Eur. J. Neurosci. 17, 1489–1497.doi:10.1046/j.1460-9568.2003.02574.x. Crossref, PubMed, ISI, Google ScholarLacquaniti F, Guigon E, Bianchi L, Ferraina S& Caminiti R . 1995Representing spatial information for limb movement: role of area 5 in the monkey. Cereb. Cortex. 5, 391–409. Crossref, PubMed, ISI, Google ScholarLewis B.W . 1881Researches on the comparative structure of the cortex cerebri. Phil. Trans. R. Soc. Lond. 171, 35–64. Link, Google ScholarLewis B.W& Clarke H . 1878The cortical lamination of the motor area of the brain. Proc. R. Soc. Lond. 27, 38–49. Link, Google ScholarLuria A.R Frontal-lobe syndromes. Handbook of clinical neurology, Vinken P.J& Bruyn G.W vol. 21969pp. 725–757. Eds. Amsterdam:North Holland. Google ScholarMatelli M, Luppino G& Rizzolatti G . 1985Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav. Brain Res. 18, 125–136.doi:10.1016/0166-4328(85)90068-3. Crossref, PubMed, ISI, Google ScholarMeynert T . 1867Der Bau der Grosshirnrinde und seine ortlichen Verschiedenheiten, nebst einem pathologisch–anatomischen Corollarium. Vierteljahresschrift für Psychiatrie77–93.(see also pp. 198–217). Google ScholarMeynert T A clinical treatise on diseases of the fore-brain based upon a study of its structure, functions, and nutrition. Part I. The anatomy, physiology, and chemistry of the brain. 1885New York:G.P. Putnam's Sons. Google ScholarMilner B . 1972Disorders of learning and memory after temporal lobe lesions in man. Clin. Neurosurg. 19, 421–446. Crossref, PubMed, Google ScholarMishkin M . 1982A memory system in the monkey. Phil. Trans. R. Soc. B. 298, 85–95. Link, ISI, Google ScholarMorosan P, Rademacher J, Schleicher A, Amunts K, Schormann T& Zilles K . 2001Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage. 13, 684–701.doi:10.1006/nimg.2000.0715. Crossref, PubMed, ISI, Google ScholarMorris R, Pandya D.N& Petrides M Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J. Comp. Neurol. 407, 1999a183–192. Crossref, PubMed, ISI, Google ScholarMorris R, Petrides M& Pandya D.N Architecture and connections of retrosplenial area 30 in the rhesus monkey (Macaca mulatta). Eur. J. Neurosci. 11, 1999b2506–2518.doi:10.1046/j.1460-9568.1999.00672.x. Crossref, PubMed, ISI, Google ScholarMountcastle V.B, Lynch J.C, Georgopoulos A, Sakata H& Acuna C . 1975Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908. Crossref, PubMed, ISI, Google ScholarOwen A.M . 1997The functional organization of working memory processes within the human lateral frontal cortex: The contribution of functional neuroimaging. Eur. J. Neurosci. 9, 1329–1339. Crossref, PubMed, ISI, Google ScholarPetrides M . 1982Motor conditional associative-learning after selective prefrontal lesions in the monkey. Behav. Brain Res. 5, 407–413.doi:10.1016/0166-4328(82)90044-4. Crossref, PubMed, ISI, Google ScholarPetrides M . 1985Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101.doi:10.1016/0166-4328(85)90085-3. Crossref, PubMed, ISI, Google ScholarPetrides M Conditional learning and the primate frontal cortex. The frontal lobes revisited& Perecman E . 1987pp. 91–108. Eds. New York:IRBN Press. Google ScholarPetrides M . 1991Monitoring of selections of visual stimuli and the primate frontal cortex. Proc. R. Soc. B. 246, 293–298. Link, ISI, Google ScholarPetrides M Frontal lobes and working memory: evidence from investigations of the effects of cortical excisions in nonhuman primates. Handbook of neuropsychology, Boller F& Grafman J vol. 91994pp. 59–82. Eds. Amsterdam:Elsevier. Google ScholarPetrides M . 1996Specialized systems for the processing of mnemonic information within the primate frontal cortex. Phil. Trans. R. Soc. B. 351, 1455–1462. Link, ISI, Google ScholarPetrides M Dissociable roles of mid-dorsolateral and anterior inferotemporal cortex in visual working memory. J. Neurosci. 20, 2000a7496–7503. Crossref, PubMed, ISI, Google ScholarPetrides M Mapping prefrontal cortical systems for the control of cognition. Brain mapping: the systems, Toga A.W& Mazziotta J.C . 2000bpp. 159–176. Eds. San Diego:Academic Press. Google ScholarPetrides M The rostral–caudal axis of cognitive control within the lateral frontal cortex. From monkey brain to human brain, Dehaene S, Duhamel G.R, Hauser M& Rizzolatti G . 2005Cambridge, MA:MIT Press. Google ScholarPetrides M& Pandya D.N . 1984Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116.doi:10.1002/cne.902280110. Crossref, PubMed, ISI, Google ScholarPetrides M& Pandya D.N Comparative architectonic analysis of the human and the macaque frontal cortex. Handbook of neuropsychology, Boller F& Grafman J vol. 91994pp. 17–58. Eds. Amsterdam:Elsevier. Google ScholarPetrides M& Pandya D.N . 1999Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036.doi:10.1046/j.1460-9568.1999.00518.x. Crossref, PubMed, ISI, Google ScholarPetrides M& Pandya D.N . 2002Comparative cytoarchitectonic analysis in the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 16, 291–310.doi:10.1046/j.1460-9568.2001.02090.x. Crossref, PubMed, ISI, Google ScholarPetrides M& Pandya D.N The frontal cortex. The human nervous system, Paxinos G& Mai J.K 2nd edn2004pp. 950–972. Eds. San Diego:Elsevier Academic Press.ch 25. Crossref, Google ScholarPetrides M, Alivisatos B& Frey S . 2002Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proc. Natl Acad. Sci. USA. 99, 5649–5654.doi:10.1073/pnas.072092299. Crossref, PubMed, ISI, Google ScholarPetrides M, Alivisatos B& Evans A.C . 1995Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proc. Natl Acad. Sci. USA. 92, 5803–5807. Crossref, PubMed, ISI, Google ScholarPoldrack R.A, Wagner A.D, Prull M.W, Desmond J.E, Glover G.H& Gabrieli J.D.E . 1999Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage. 10, 15–35.doi:10.1006/nimg.1999.0441. Crossref, PubMed, ISI, Google ScholarPostle B.R& D'Esposito M . 2000Evaluating models of the topographical organization of working memory function in frontal cortex with event-related fMRI study. Psychobiology. 28, 132–145. Google ScholarPreuss T.M& Goldman-Rakic P.S . 1991Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate galago and the anthropoid primate macaca. J. Comp. Neurol. 310, 429–474.doi:10.1002/cne.903100402. Crossref, PubMed, ISI, Google ScholarRizzolatti G& Luppino G . 2001The cortical motor system. Neuron. 31, 889–901.doi:10.1016/S0896-6273(01)00423-8. Crossref, PubMed, ISI, Google ScholarRobbins T.W . 1996Dissociating executive functions of the prefrontal cortex. Phil. Trans. R. Soc. B. 351, 1463–1470. Link, ISI, Google ScholarSakata H, Takaoka Y, Kawarasaki A& Shibutani H . 1973Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res. 64, 85–102.doi:10.1016/0006-8993(73)90172-8. Crossref, PubMed, ISI, Google ScholarSarkissov S.A, Filimonoff I.N, Kononowa E.P, Preobraschenskaja I.S& Kukuew L.A Atlas of the cytoarchitectonics of the human cerebral cortex. 1955Moscow:Medgiz. Google ScholarSchall J.D, Morel A, King D.J& Bullier J . 1995Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487. Crossref, PubMed, ISI, Google ScholarShallice T& Burgess D.F . 1996The domain of supervisory processes and temporal organisation of behaviour. Phil. Trans. R. Soc. B. 351, 1405–1411. Link, ISI, Google ScholarSmith G.E . 1907A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J. Anat. Physiol. 41, 237–254. PubMed, Google ScholarStanton G.B, Deng S.-Y, Goldberg M.E& McMullen N.T . 1989Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys. J. Comp. Neurol. 282, 415–427.doi:10.1002/cne.902820308. Crossref, PubMed, ISI, Google ScholarSquire L.R& Zola-Morgan S . 1991The medial temporal lobe memory system. Science. 253, 1380–1386. Crossref, PubMed, ISI, Google ScholarTalairach J& Tournoux P Co-planar stereotaxic atlas of the human brain. 1988Stuttgart:Thieme. Google ScholarVogt C& Vogt O . 1919Allgemeinere Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25, 279–462. Google ScholarWalker A.E . 1940A cytoarchitectural study of the prefrontal area of the macaque monkey. J. Comp. Neurol. 73, 59–86.doi:10.1002/cne.900730106. Crossref, Google Scholar


