Philosophical Transactions of the Royal Society B: Biological Sciences

    A comparison of the architecture of the human prefrontal cortex with that of the macaque monkey showed a very similar architectonic organization in these two primate species. There is no doubt that the prefrontal cortical areas of the human brain have undergone considerable development, but it is equally clear that the basic architectonic organization is the same in the two species. Thus, a comparative approach to the study of the functional organization of the primate prefrontal cortex is more likely to reveal the essential aspects of the various complex control processes that are the domain of frontal function. The lateral frontal cortex appears to be functionally organized along both a rostral–caudal axis and a dorsal–ventral axis. The most caudal frontal region, the motor region on the precentral gyrus, is involved in fine motor control and direct sensorimotor mappings, whereas the caudal lateral prefrontal region is involved in higher order control processes that regulate the selection among multiple competing responses and stimuli based on conditional operations. Further rostrally, the mid-lateral prefrontal region plays an even more abstract role in cognitive control. The mid-lateral prefrontal region is itself organized along a dorsal–ventral axis of organization, with the mid-dorsolateral prefrontal cortex being involved in the monitoring of information in working memory and the mid-ventrolateral prefrontal region being involved in active judgments on information held in posterior cortical association regions that are necessary for active retrieval and encoding of information.

    References

    • Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings H.B.M& Zilles K. 1999 Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341. Crossref, PubMed, ISIGoogle Scholar
    • Andersen R& Gnadt J.W Role of posterior parietal cortex in saccadic eye movements. The neurobiology of saccadic eye movements , Wurtz R& Goldberg M. 1989pp. 315–335. Eds. Amsterdam:Elsevier. Google Scholar
    • Andersen R.A, Asanuma C, Essick G& Siegel R.M. 1990 Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J. Comp. Neurol. 296, 65–113.doi:10.1002/cne.902960106. Crossref, PubMed, ISIGoogle Scholar
    • Bachevalier J& Mishkin M. 1986 Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav. Brain Res. 20, 249–261.doi:10.1016/0166-4328(86)90225-1. Crossref, PubMed, ISIGoogle Scholar
    • Bailey P& Bonin G The isocortex of man. 1951 Urbana:University of Illinois Press. Google Scholar
    • Baillarger J. 1840 Recherches sur la structure de la couche corticale des circonvolutions du cerveau. Mém. Acad. R. Méd. 8, 149–183. Google Scholar
    • Barbas H. 1988 Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276, 313–342.doi:10.1002/cne.902760302. Crossref, PubMed, ISIGoogle Scholar
    • Barbas H& Mesulam M.-M. 1981 Organization afferent input to subdivisions of area 8 in the rhesus monkey. J. Comp. Neurol. 200, 407–431.doi:10.1002/cne.902000309. Crossref, PubMed, ISIGoogle Scholar
    • Barbas H& Pandya D.N. 1989 Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375.doi:10.1002/cne.902860306. Crossref, PubMed, ISIGoogle Scholar
    • Betz W. 1874 Anatomischer Nachweis zweier Gehirncentra. Centralblatt für die medicinischen Wissenschaften 578–580.(see also pp. 595–599). Google Scholar
    • Brodmann K. 1905 Beitraege zur histologischen Lokalisation der Grosshirnrinde. III. Mitteilung: Die Rindenfelder der niederen Affen. J. Psychol. Neurol. (Lzp). 4, 177–226. Google Scholar
    • Brodmann K. 1908 Beitraege zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung: Die Cortexgliederung des Menschen. J. Psychol. Neurol. (Lzp). 10, 231–246T. Google Scholar
    • Brodmann K Vergleichende localisationslehre der grosshirnrinde in ihren prinzipien dargestellt auf grund des zellenbaues. 1909 Leipzig:Barth. Google Scholar
    • Bruce C.J, Goldberg M.E, Fushnell M.C& Stanton G.B. 1985 Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734. Crossref, PubMed, ISIGoogle Scholar
    • Campbell A.W Histological studies on the localisation of cerebral function. 1905 Cambridge:Cambridge University Press. Google Scholar
    • Carmichael S.T& Price J.L. 1995 Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664.doi:10.1002/cne.903630409. Crossref, PubMed, ISIGoogle Scholar
    • Cavada C& Goldman-Rakic P.S. 1989 Posterior parietal cortex in rhesus monkey. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445.doi:10.1002/cne.902870403. Crossref, PubMed, ISIGoogle Scholar
    • Duncan J& Owen A.M. 2000 Common regions of the human frontal recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483.doi:10.1016/S0166-2236(00)01633-7. Crossref, PubMed, ISIGoogle Scholar
    • Duffy F& Burchfield J. 1971 Somatosensory system: organizational hierarchy from single units in monkey area 5. Science. 172, 273–275. Crossref, PubMed, ISIGoogle Scholar
    • Economo C& Koskinas G.N Die cytoarchitektonik der hirnrinde des erwachsenen menschen. 1925 Wien:Springer. Google Scholar
    • Fuster J.M The prefrontal cortex. Anatomy, physiology, and neuropsychology of the frontal lobe. 1989 New York:Raven Press. Google Scholar
    • Halsband U& Passingham R. 1982 The role of premotor and parietal cortex in the direction of action. Brain Res. 240, 368–372.doi:10.1016/0006-8993(82)90239-6. Crossref, PubMed, ISIGoogle Scholar
    • He S.Q, Dum R.P& Strick P.L. 1993 Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J. Neurosci. 13, 952–980. Crossref, PubMed, ISIGoogle Scholar
    • Kostopoulos P& Petrides M. 2003 The mid-ventrolateral prefrontal cortex: insights into its role in memory retrieval. Eur. J. Neurosci. 17, 1489–1497.doi:10.1046/j.1460-9568.2003.02574.x. Crossref, PubMed, ISIGoogle Scholar
    • Lacquaniti F, Guigon E, Bianchi L, Ferraina S& Caminiti R. 1995 Representing spatial information for limb movement: role of area 5 in the monkey. Cereb. Cortex. 5, 391–409. Crossref, PubMed, ISIGoogle Scholar
    • Lewis B.W. 1881 Researches on the comparative structure of the cortex cerebri. Phil. Trans. R. Soc. Lond. 171, 35–64. LinkGoogle Scholar
    • Lewis B.W& Clarke H. 1878 The cortical lamination of the motor area of the brain. Proc. R. Soc. Lond. 27, 38–49. LinkGoogle Scholar
    • Luria A.R Frontal-lobe syndromes. Handbook of clinical neurology , Vinken P.J& Bruyn G.W vol. 2 1969pp. 725–757. Eds. Amsterdam:North Holland. Google Scholar
    • Matelli M, Luppino G& Rizzolatti G. 1985 Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav. Brain Res. 18, 125–136.doi:10.1016/0166-4328(85)90068-3. Crossref, PubMed, ISIGoogle Scholar
    • Meynert T. 1867 Der Bau der Grosshirnrinde und seine ortlichen Verschiedenheiten, nebst einem pathologisch–anatomischen Corollarium. Vierteljahresschrift für Psychiatrie 77–93.(see also pp. 198–217). Google Scholar
    • Meynert T A clinical treatise on diseases of the fore-brain based upon a study of its structure, functions, and nutrition. Part I. The anatomy, physiology, and chemistry of the brain. 1885 New York:G.P. Putnam's Sons. Google Scholar
    • Milner B. 1972 Disorders of learning and memory after temporal lobe lesions in man. Clin. Neurosurg. 19, 421–446. Crossref, PubMedGoogle Scholar
    • Mishkin M. 1982 A memory system in the monkey. Phil. Trans. R. Soc. B. 298, 85–95. Link, ISIGoogle Scholar
    • Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T& Zilles K. 2001 Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage. 13, 684–701.doi:10.1006/nimg.2000.0715. Crossref, PubMed, ISIGoogle Scholar
    • Morris R, Pandya D.N& Petrides M Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J. Comp. Neurol. 407, 1999a 183–192. Crossref, PubMed, ISIGoogle Scholar
    • Morris R, Petrides M& Pandya D.N Architecture and connections of retrosplenial area 30 in the rhesus monkey (Macaca mulatta). Eur. J. Neurosci. 11, 1999b 2506–2518.doi:10.1046/j.1460-9568.1999.00672.x. Crossref, PubMed, ISIGoogle Scholar
    • Mountcastle V.B, Lynch J.C, Georgopoulos A, Sakata H& Acuna C. 1975 Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908. Crossref, PubMed, ISIGoogle Scholar
    • Owen A.M. 1997 The functional organization of working memory processes within the human lateral frontal cortex: The contribution of functional neuroimaging. Eur. J. Neurosci. 9, 1329–1339. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M. 1982 Motor conditional associative-learning after selective prefrontal lesions in the monkey. Behav. Brain Res. 5, 407–413.doi:10.1016/0166-4328(82)90044-4. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M. 1985 Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101.doi:10.1016/0166-4328(85)90085-3. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M Conditional learning and the primate frontal cortex. The frontal lobes revisited & Perecman E. 1987pp. 91–108. Eds. New York:IRBN Press. Google Scholar
    • Petrides M. 1991 Monitoring of selections of visual stimuli and the primate frontal cortex. Proc. R. Soc. B. 246, 293–298. Link, ISIGoogle Scholar
    • Petrides M Frontal lobes and working memory: evidence from investigations of the effects of cortical excisions in nonhuman primates. Handbook of neuropsychology , Boller F& Grafman J vol. 9 1994pp. 59–82. Eds. Amsterdam:Elsevier. Google Scholar
    • Petrides M. 1996 Specialized systems for the processing of mnemonic information within the primate frontal cortex. Phil. Trans. R. Soc. B. 351, 1455–1462. Link, ISIGoogle Scholar
    • Petrides M Dissociable roles of mid-dorsolateral and anterior inferotemporal cortex in visual working memory. J. Neurosci. 20, 2000a 7496–7503. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M Mapping prefrontal cortical systems for the control of cognition. Brain mapping: the systems , Toga A.W& Mazziotta J.C. 2000bpp. 159–176. Eds. San Diego:Academic Press. Google Scholar
    • Petrides M The rostral–caudal axis of cognitive control within the lateral frontal cortex. From monkey brain to human brain , Dehaene S, Duhamel G.R, Hauser M& Rizzolatti G. 2005 Cambridge, MA:MIT Press. Google Scholar
    • Petrides M& Pandya D.N. 1984 Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 228, 105–116.doi:10.1002/cne.902280110. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M& Pandya D.N Comparative architectonic analysis of the human and the macaque frontal cortex. Handbook of neuropsychology , Boller F& Grafman J vol. 9 1994pp. 17–58. Eds. Amsterdam:Elsevier. Google Scholar
    • Petrides M& Pandya D.N. 1999 Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036.doi:10.1046/j.1460-9568.1999.00518.x. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M& Pandya D.N. 2002 Comparative cytoarchitectonic analysis in the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur. J. Neurosci. 16, 291–310.doi:10.1046/j.1460-9568.2001.02090.x. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M& Pandya D.N The frontal cortex. The human nervous system , Paxinos G& Mai J.K 2nd edn 2004pp. 950–972. Eds. San Diego:Elsevier Academic Press.ch 25. CrossrefGoogle Scholar
    • Petrides M, Alivisatos B& Frey S. 2002 Differential activation of the human orbital, mid-ventrolateral, and mid-dorsolateral prefrontal cortex during the processing of visual stimuli. Proc. Natl Acad. Sci. USA. 99, 5649–5654.doi:10.1073/pnas.072092299. Crossref, PubMed, ISIGoogle Scholar
    • Petrides M, Alivisatos B& Evans A.C. 1995 Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proc. Natl Acad. Sci. USA. 92, 5803–5807. Crossref, PubMed, ISIGoogle Scholar
    • Poldrack R.A, Wagner A.D, Prull M.W, Desmond J.E, Glover G.H& Gabrieli J.D.E. 1999 Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage. 10, 15–35.doi:10.1006/nimg.1999.0441. Crossref, PubMed, ISIGoogle Scholar
    • Postle B.R& D'Esposito M. 2000 Evaluating models of the topographical organization of working memory function in frontal cortex with event-related fMRI study. Psychobiology. 28, 132–145. Google Scholar
    • Preuss T.M& Goldman-Rakic P.S. 1991 Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate galago and the anthropoid primate macaca. J. Comp. Neurol. 310, 429–474.doi:10.1002/cne.903100402. Crossref, PubMed, ISIGoogle Scholar
    • Rizzolatti G& Luppino G. 2001 The cortical motor system. Neuron. 31, 889–901.doi:10.1016/S0896-6273(01)00423-8. Crossref, PubMed, ISIGoogle Scholar
    • Robbins T.W. 1996 Dissociating executive functions of the prefrontal cortex. Phil. Trans. R. Soc. B. 351, 1463–1470. Link, ISIGoogle Scholar
    • Sakata H, Takaoka Y, Kawarasaki A& Shibutani H. 1973 Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res. 64, 85–102.doi:10.1016/0006-8993(73)90172-8. Crossref, PubMed, ISIGoogle Scholar
    • Sanides F Die architektonik des menschlichen stirnhirns. 1962 Berlin:Springer. Google Scholar
    • Sarkissov S.A, Filimonoff I.N, Kononowa E.P, Preobraschenskaja I.S& Kukuew L.A Atlas of the cytoarchitectonics of the human cerebral cortex. 1955 Moscow:Medgiz. Google Scholar
    • Schall J.D, Morel A, King D.J& Bullier J. 1995 Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487. Crossref, PubMed, ISIGoogle Scholar
    • Shallice T& Burgess D.F. 1996 The domain of supervisory processes and temporal organisation of behaviour. Phil. Trans. R. Soc. B. 351, 1405–1411. Link, ISIGoogle Scholar
    • Smith G.E. 1907 A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J. Anat. Physiol. 41, 237–254. PubMedGoogle Scholar
    • Stanton G.B, Deng S.-Y, Goldberg M.E& McMullen N.T. 1989 Cytoarchitectural characteristic of the frontal eye fields in macaque monkeys. J. Comp. Neurol. 282, 415–427.doi:10.1002/cne.902820308. Crossref, PubMed, ISIGoogle Scholar
    • Stuss D.T& Benson D.F The frontal lobes. 1986 New York:Raven Press. Google Scholar
    • Squire L.R& Zola-Morgan S. 1991 The medial temporal lobe memory system. Science. 253, 1380–1386. Crossref, PubMed, ISIGoogle Scholar
    • Talairach J& Tournoux P Co-planar stereotaxic atlas of the human brain. 1988 Stuttgart:Thieme. Google Scholar
    • Vicq d'Azyr F Traité d'anatomie et de physiologie. 1786 F.A. Didot:Paris. Google Scholar
    • Vogt C& Vogt O. 1919 Allgemeinere Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25, 279–462. Google Scholar
    • Walker A.E. 1940 A cytoarchitectural study of the prefrontal area of the macaque monkey. J. Comp. Neurol. 73, 59–86.doi:10.1002/cne.900730106. CrossrefGoogle Scholar