Philosophical Transactions of the Royal Society B: Biological Sciences

    When the illumination on a scene changes, so do the visual signals elicited by that scene. In spite of these changes, the objects within a scene tend to remain constant in their apparent colour. We start this review by discussing the psychophysical procedures that have been used to quantify colour constancy. The transformation imposed on the visual signals by a change in illumination dictates what the visual system must ‘undo’ to achieve constancy. The problem is mathematically underdetermined, and can be solved only by exploiting regularities of the visual world. The last decade has seen a substantial increase in our knowledge of such regularities as technical advances have made it possible to make empirical measurements of large numbers of environmental scenes and illuminants. This review provides a taxonomy of models of human colour constancy based first on the assumptions they make about how the inverse transformation might be simplified, and second, on how the parameters of the inverse transformation might be set by elements of a complex scene. Candidate algorithms for human colour constancy are represented graphically and pictorially, and the availability and utility of an accurate estimate of the illuminant is discussed. Throughout this review, we consider both the information that is, in principle, available and empirical assessments of what information the visual system actually uses. In the final section we discuss where in our visual systems these computations might be implemented.

    References

    • Adelson E.H. 1993Perceptual organization and the judgment of brightness. Science. 262, 2042–2044. Crossref, PubMed, ISIGoogle Scholar
    • Adelson E.H& Pentland A.PThe perception of shading and reflectance. Perception as Bayesian inference, Knill D.C& Richards W. 1996Cambridge University Press. Google Scholar
    • Amano K. 2004Colour constancy under simultaneous changes in surface position and illuminant. Proc. R. Soc. B. 271, 2319–2326.doi:10.1098/rspb.2004.2884. . Link, ISIGoogle Scholar
    • Arend LSurface colors, illumination and surface geometry: intrinsic image models of human vision. Lightness, brightness and transparency& Gilchrist A.L. 1994pp. 159–214. Eds. Hillside, NJ:Lawrence Erlbaum Associates. Google Scholar
    • Arend L& Reeves A. 1986Simultaneous color constancy. J. Opt. Soc. Am. A. 3, 1743–1751. Crossref, PubMedGoogle Scholar
    • Arend L, Reeves A, Schirillo J& Goldstein R. 1991Simultaneous color constancy: papers with diverse Munsell values. J. Opt. Soc. Am. A. 8, 661–672. Crossref, PubMedGoogle Scholar
    • Barbur J.L, de Cunha D& Williams C.B. 2004Study of instantaneous color constancy mechanisms in human vision. J. Electronic Imaging. 13, 15–28. Crossref, ISIGoogle Scholar
    • Beck JSurface color perception. 1972New York:Cornell University Press. Google Scholar
    • Bhalla M& Proffitt D.R. 1999Visual-motor recalibration in geographical slant perception. J. Exp. Psychol. (Hum. Percept. Perform.). 25, 1076–1096. Crossref, PubMed, ISIGoogle Scholar
    • Blackwell K.T& Buchsbaum G. 1988Quantitative studies of color constancy. J. Opt. Soc. Am. A. 5, 1772–1780. Crossref, PubMedGoogle Scholar
    • Bloj M.G, Kersten D& Hurlbert A.C. 1999Perception of three-dimensional shape influences colour perception through mutual illumination. Nature. 402, 877–879. Crossref, PubMed, ISIGoogle Scholar
    • Brainard D.H. 1998Color constancy in the nearly natural image. 2. Achromatic loci. J. Opt. Soc. Am. A. 15, 307–325. CrossrefGoogle Scholar
    • Brainard D.HColor constancy. The visual neurosciences, Chalupa L.M& Werner J.S. 2004pp. 948–961. Eds. Cambridge, MA/London:MIT Press. Google Scholar
    • Brainard D.H& Freeman W.T. 1997Bayesian color constancy. J. Opt. Soc. Am. A. 14, 1393–1411. CrossrefGoogle Scholar
    • Brainard D.H& Wandell B.A. 1986Analysis of the retinex theory of color vision. J. Opt. Soc. Am. A. 3, 1651–1661. Crossref, PubMedGoogle Scholar
    • Brainard D.H& Wandell B.A. 1992Asymmetric color matching: how color appearance depends on the illuminant. J. Opt. Soc. Am. A. 9, 1433–1448. Crossref, PubMedGoogle Scholar
    • Brainard D.H, Wandell B.A& Chichilnisky E.J. 1993Color constancy: from physics to appearance. Curr. Dir. Psychol. Sci. 2, 165–170. CrossrefGoogle Scholar
    • Brainard D.H, Brunt W.A& Speigle J.M. 1997Color constancy in the nearly natural image. I. Asymmetric matches. J. Opt. Soc. Am. A. 14, 2091–2110. CrossrefGoogle Scholar
    • Brainard D.H, Kraft J.M& Longère PColour constancy: developing empirical tests of computational models. Colour perception: mind and the physical world, Mausfeld R& Heyer D. 2003Oxford University Press. Google Scholar
    • Bramwell D.I& Hurlbert A. 1993The role of object recognition in colour constancy. Perception. 22, S62. Google Scholar
    • Brill M.H. 1978A device performing illuminant-invariant assessment of chromatic relations. J. Theor. Biol. 71, 473–478. Crossref, PubMed, ISIGoogle Scholar
    • Brill M.H. 1995The relation between the color of the illuminant and the color of the illuminated object—commentary. Color Res. Appl. 20, 70–72. Crossref, ISIGoogle Scholar
    • Brill M.H& West G. 1986Chromatic adaptation and color constancy: a possible dichotomy. Color Res. Appl. 11, 196–204. Crossref, ISIGoogle Scholar
    • Broackes JThe autonomy of color. Reduction, explanation and realism, Lennon K& Charles D. 1992Oxford University Press. Google Scholar
    • Brown R.O. 1994The world is not gray. Invest. Ophthalmol. Vis. Sci. 35, 2165. ISIGoogle Scholar
    • Buchsbaum G. 1980A spatial processor model for object colour perception. J. Franklin Inst. 310, 1–26. Crossref, ISIGoogle Scholar
    • Chichilnisky E.J& Wandell B.A. 1999Trichromatic opponent color classification. Vis. Res. 39, 3444–3458. Crossref, PubMed, ISIGoogle Scholar
    • Chittka L, Shmida A, Troje N& Menzel R. 1994Ultraviolet as a component of flower reflections, and the colour perception of Hymenoptera. Vis. Res. 34, 1489–1508. Crossref, PubMed, ISIGoogle Scholar
    • Cohen J. 1964Dependency of the spectral reflectance curves of the Munsell color chips. Psychon. Sci. 1, 369–370. CrossrefGoogle Scholar
    • Cornelissen F.W& Brenner E. 1995Simultaneous colour constancy revisited: an analysis of viewing strategies. Vis. Res. 35, 2431–2448. Crossref, PubMed, ISIGoogle Scholar
    • Craven B.J& Foster D.H. 1992An operational approach to colour constancy. Vis. Res. 32, 1359–1366. Crossref, PubMed, ISIGoogle Scholar
    • Crawford B.H. 1947Visual adaptation in relation to brief conditioning stimuli. Proc. R. Soc. B. 134, 283–302. Link, ISIGoogle Scholar
    • Dannemiller J.L. 1992Spectral reflectance of natural objects: how many basis functions are necessary?. J. Opt. Soc. Am. A. 9, 507–515. CrossrefGoogle Scholar
    • Dannemiller J.L. 1993Rank orderings of photoreceptor photon catches from natural objects are nearly illuminant-invariant. Vis. Res. 33, 131–140. Crossref, PubMed, ISIGoogle Scholar
    • Derrington A.M, Krauskopf J& Lennie P. 1984Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. 357, 241–265. Crossref, PubMed, ISIGoogle Scholar
    • Drew M.S& Funt B.V. 1990Calculating surface reflectance using a single-bounce model of mutual reflection. Proc. IEEE Int. Conf. on Computer Vision, Osaka, Japan, 4–7 December 1990393–399. Google Scholar
    • D'Zmura M. 1992Color constancy: surface color from changing illumination. J. Opt. Soc. Am. A. 9, 490–493. CrossrefGoogle Scholar
    • D'Zmura M& Iverson G. 1993Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces. J. Opt. Soc. Am. A. 10, 2148–2165. CrossrefGoogle Scholar
    • D'Zmura M& Iverson G. 1993Color constancy. II. Results for two-stage linear recovery of spectral descriptions for lights and surfaces. J. Opt. Soc. Am. A. 10, 2166–2180. CrossrefGoogle Scholar
    • D'Zmura M& Iverson G. 1994Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces. J. Opt. Soc. Am. A. 11, 2398–2400. Google Scholar
    • D'Zmura M, Iverson G& Singer BProbabilistic color constancy. Geometric Representations of Perceptual Phenomena: Articles in Honor of Tarow Indow's 70th Birthday, Luce R.D, D'Zmura M, Hoffman D, Iverson G& Romney K. 1995pp. 187–202. Eds. Hillsdale, NJ:Laurence Erlbaum Associates. Google Scholar
    • D'Zmura M& Lennie P. 1986Mechanisms of color constancy. J. Opt. Soc. Am. A. 3, 1662–1672. Crossref, PubMedGoogle Scholar
    • Fairchild M.DChromatic adaptation in hard-copy / soft-copy comparisons. Proc. SPIE: Color Hard Copy and Graphic Arts II (ed. J. Bares), vol. 1912, San Jose, CA, 31 January–5 February 19931993pp. 47–61. Google Scholar
    • Fairchild M.D& Lennie P. 1992Chromatic adaptation to natural and incandescent illuminants. Vis. Res. 32, 2077–2085. Crossref, PubMed, ISIGoogle Scholar
    • Finlayson G.D, Drew M.S& Funt B.V. 1994Color constancy: generalized diagonal transforms suffice. J. Opt. Soc. Am. A. 11, 3011–3019. CrossrefGoogle Scholar
    • Finlayson G.D, Hordley S.D& Hubel P.M. 2001Color by correlation: a simple, unifying framework for colour constancy. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1209–1221. Crossref, ISIGoogle Scholar
    • Forsyth D.A. 1990A novel algorithm for colour constancy. Int. J. Comput. Vis. 5, 5–36. Crossref, ISIGoogle Scholar
    • Foster D.H. 2003Does colour constancy exist?. Trends Cogn. Sci. 7, 439–443. Crossref, PubMed, ISIGoogle Scholar
    • Foster D.H& Nascimento S.M. 1994Relational colour constancy from invariant cone-excitation ratios. Proc. R. Soc. B. 257, 115–121. Link, ISIGoogle Scholar
    • Foster D.H, Nascimento S.M, Craven B.J, Linnell K.J, Cornelissen F.W& Brenner E. 1997Four issues concerning colour constancy and relational colour constancy. Vis. Res. 37, 1341–1345. Crossref, PubMed, ISIGoogle Scholar
    • Foster D.H, Nascimento S.M, Amano K, Arend L, Linnell K.J, Nieves J.L, Plet S& Foster J.S. 2001Parallel detection of violations of color constancy. Proc. Natl Acad. Sci. USA. 98, 8151–8156. Crossref, PubMed, ISIGoogle Scholar
    • Funt B.V, Drew M.S& Ho J. 1991Color constancy from mutual reflection. J. Comput. Vis. 6, 5–24. Crossref, ISIGoogle Scholar
    • Gilchrist A, Delman S& Jacobsen A. 1983The classification and integration of edges as critical to the perception of reflectance and illumination. Percept. Psychophys. 33, 425–436. Crossref, PubMedGoogle Scholar
    • Gilchrist A, Kossyfidis C, Bonato F, Agostini T, Cataliotti J, Li X, Spehar B, Annan V& Economou E. 1999An anchoring theory of lightness perception. Psychol. Rev. 106, 795–834. Crossref, PubMed, ISIGoogle Scholar
    • Golz J& MacLeod D.I. 2002Influence of scene statistics on colour constancy. Nature. 415, 637–640. Crossref, PubMed, ISIGoogle Scholar
    • Hagedorn J& D'Zmura M. 2000Color appearance of surfaces viewed through fog. Perception. 29, 1169–1184. Crossref, PubMed, ISIGoogle Scholar
    • He S& MacLeod D.I. 1998Local nonlinearity in S-cones and their estimated light-collecting apertures. Vis. Res. 38, 1001–1006. Crossref, PubMed, ISIGoogle Scholar
    • Helmholtz, H. 1866 Handbuch der Physiologishen Optik, 3rd edn. [Transl. J. P. C. Southall 1962 Helmholtz's treatise on physiological optics, 2nd edn. New York: Dover.]. Google Scholar
    • Helson H. 1938Fundamental problems in color vision. I. The principle governing changes in hue, saturation, and lightness of non-selective samples in chromatic illumination. J. Exp. Psychol. 23, 439–476. CrossrefGoogle Scholar
    • Helson H. 1947Adaptation-level as frame of reference for prediction of psychophysical data. J. Opt. Soc. Am. 60, 1–29. Google Scholar
    • Helson HAdaptation level theory. 1964Oxford:Harper and Row. Google Scholar
    • Hering, E. 1920 Grundzüge der Lehre vom Lichtsinn. [Transl. L. M. Hurvich & D. Jameson 1964 Outlines of a theory of the light sense. Cambridge, MA: Harvard University Press.]. Google Scholar
    • Heywood C.A, Cowey A& Newcombe F. 1991Chromatic discrimination in a cortically colour blind observer. Eur. J. Neurosci. 3, 802–812. Crossref, PubMed, ISIGoogle Scholar
    • Hiltunen, J. 1996 Munsell colors mat (spectrophotometer measurements by Hiltunen). Retrieved September 10, 1999, from http://www.it.lut.fi/ip/research/color/database/download.html#munsell_spec_matt. Google Scholar
    • Hurlbert A.C. 1986Formal connections between lightness algorithms. J. Opt. Soc. Am. A. 3, 1684–1693. Crossref, PubMedGoogle Scholar
    • Hurlbert A.CComputational models of colour constancy. Perceptual constancy: why things look as they do, Walsh V& Kulikowski J. 1998Cambridge University Press. Google Scholar
    • Hurlbert A.C& Poggio T.A. 1988Synthesizing a color algorithm from examples. Science. 239, 482–485. Crossref, PubMed, ISIGoogle Scholar
    • Hurlbert A.C& Wolf K. 2004Color contrast: a contributory mechanism to color constancy. Progr. Brain Res. 144, 147–160. PubMed, ISIGoogle Scholar
    • Hurlbert A.C, Bramwell D.I, Heywood C& Cowey A. 1998Discrimination of cone contrast changes as evidence for colour constancy in cerebral achromatopsia. Exp. Brain Res. 123, 136–144. Crossref, PubMed, ISIGoogle Scholar
    • Ives H.E. 1912The relation between the color of the illuminant and the color of the illuminated object. Trans. Illuminat. Eng. Soc. 7, 62–72.(Reprinted in: Color Res. Appl. 20, 70–75.). Google Scholar
    • Jin E.W& Shevell S.K. 1996Color memory and color constancy. J. Opt. Soc. Am. A. 13, 1981–1991. CrossrefGoogle Scholar
    • Joost U, Lee B.B& Zaidi Q. 2002Lichtenberg's letter to Goethe on färbige schatten. Color Res. Appl. 27, 300–303. Crossref, ISIGoogle Scholar
    • Judd D. 1940Hue saturation and lightness of surface colors with chromatic illumination. J. Opt. Soc. Am. 30, 2–32. CrossrefGoogle Scholar
    • Judd D, MacAdam D.L& Wyszecki G.W. 1964Spectral distribution of typical daylight as a function of correlated color temperature. J. Opt. Soc. Am. 54, 1031–1040. Crossref, ISIGoogle Scholar
    • Katz DThe world of colour. 1935London:K. Paul, Trench, Trubner. Google Scholar
    • Khang B.G& Zaidi Q. 2002Cues and strategies for color constancy: perceptual scission, image junctions and transformational color matching. Vis. Res. 42, 211–226. Crossref, PubMed, ISIGoogle Scholar
    • Kraft J.M& Brainard D.H. 1999Mechanisms of color constancy under nearly natural viewing. Proc. Natl Acad. Sci. USA. 96, 307–312. Crossref, PubMed, ISIGoogle Scholar
    • Krantz D. 1968A theory of context effects based on cross-context matching. J. Math. Psychol. 5, 1–48. Crossref, ISIGoogle Scholar
    • Land E.H. 1964The retinex. Am. Scientist. 52, 247–264. Google Scholar
    • Land E.H. 1983Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image. Proc. Natl Acad. Sci. USA. 80, 5163–5169. Crossref, PubMed, ISIGoogle Scholar
    • Land E.H. 1986Recent advances in retinex theory. Vis. Res. 26, 7–21. Crossref, PubMed, ISIGoogle Scholar
    • Land E.H& McCann J.J. 1971Lightness and retinex theory. J. Opt. Soc. Am. 61, 1–11. Crossref, PubMed, ISIGoogle Scholar
    • Land E.H, Hubel D.H, Livingstone M.S, Perry S.H& Burns M.M. 1983Colour-generating interactions across the corpus callosum. Nature. 303, 616–618. Crossref, PubMed, ISIGoogle Scholar
    • Lee H.C. 1986Method for computing the scene-illuminant chromaticity from specular highlights. J. Opt. Soc. Am. A. 3, 1694–1699. Crossref, PubMedGoogle Scholar
    • Lehmann T.M& Palm C. 2001Color line search for illuminant estimation in real-world scenes. J. Opt. Soc. Am. A. 18, 2679–2691. CrossrefGoogle Scholar
    • Linnell K.J& Foster D.H. 1996Dependence of relational colour constancy on the extraction of a transient signal. Perception. 25, 221–228. Crossref, PubMed, ISIGoogle Scholar
    • Linnell K.J& Foster D.HSpace-average scene colour used to extract illuminant information. John Dalton's colour vision legacy, Dickinson C, Murray I& Carden D. 1997pp. 501–509. Eds. London:Taylor and Francis. Google Scholar
    • Linnell K.J& Foster D.H. 2002Scene articulation: dependence of illuminant estimates on number of surfaces. Perception. 31, 151–159. Crossref, PubMed, ISIGoogle Scholar
    • MacLeod D.I. 2003New dimensions in color perception. Trends Cogn. Sci. 7, 97–99. Crossref, PubMed, ISIGoogle Scholar
    • MacLeod D.I& Boynton R.M. 1979Chromaticity diagram showing cone excitation by stimuli of equal luminance. J. Opt. Soc. Am. 69, 1183–1186. Crossref, PubMed, ISIGoogle Scholar
    • MacLeod D.I& He S. 1993Visible flicker from invisible patterns. Nature. 361, 256–258. Crossref, PubMed, ISIGoogle Scholar
    • MacLeod D.I, Williams D.R& Makous W. 1992A visual nonlinearity fed by single cones. Vis. Res. 32, 347–363. Crossref, PubMed, ISIGoogle Scholar
    • Maloney L.T. 1986Evaluation of linear models of surface spectral reflectance with small numbers of parameters. J. Opt. Soc. Am. A. 3, 1673–1683. Crossref, PubMedGoogle Scholar
    • Maloney L.TPhysics-based approaches to modeling surface color perception. Color vision: from genes to perception, Gegenfurtner K.R& Sharpe L.T. 1999Cambridge University Press. Google Scholar
    • Maloney L.T. 2002Illuminant estimation as cue combination. J. Vis. 2, 493–504. Crossref, PubMed, ISIGoogle Scholar
    • Maloney L.TCommentaries on Brainard, Kraft and Longère: surface colour perception and its environments. Colour perception: mind and the physical world, Mausfeld R& Heyer D. 2003Oxford University Press. Google Scholar
    • Maloney L.T& Wandell B.A. 1986Color constancy: a method for recovering surface spectral reflectance. J. Opt. Soc. Am. A. 3, 29–33. Crossref, PubMedGoogle Scholar
    • Maloney L.T& Yang J.NThe illumination estimation hypothesis and surface color perception. Colour: connecting the mind to the physical world, Mausfeld R& Heyer D. 2003Oxford University Press. Google Scholar
    • Marshall N.J. 2000Communication and camouflage with the same ’bright’ colours in reef fishes. Phil. Trans. R. Soc. B. 355, 1243–1248. Link, ISIGoogle Scholar
    • Mausfeld RColour perception: from Grassman codes to a dual code for object and illuminant colours. Color vision: perspective from different disciplines, Backhaus W, Kliegl R& Werner J.S. 1998pp. 219–250. Eds. Berlin:Walter De Gruyter. CrossrefGoogle Scholar
    • McCann J.J. 1992Rules for colour constancy. Ophthalmic Physiol. Opt. 12, 175–177. Crossref, PubMed, ISIGoogle Scholar
    • McCann J.JAdaptation or contrast: the controlling mechanism for colour constancy. John Dalton's colour vision legacy, Dickinson C, Murray I& Carden D. 1997pp. 469–473. Eds. London:Taylor and Francis. Google Scholar
    • McCann J.J, McKee S.P& Taylor T.H. 1976Quantitative studies in retinex theroy. A comparison between theoretical predictions and observer responses to the “color mondrian” experiments. Vis. Res. 16, 445–458. Crossref, PubMed, ISIGoogle Scholar
    • Mollon J.DOrigins of modern color science. The science of color& Shevell S.K2nd edn2003Amsterdam/London:Elsevier/Optical Society of Americapp. 1–39. Google Scholar
    • Mollon J.D, Regan B.C& Bowmaker J.K. 1998What is the function of the cone-rich rim of the retina?. Eye. 12, 548–552. Crossref, PubMed, ISIGoogle Scholar
    • Monge G. 1789Mémoire sur quelques phénomènes de la vision. Annales de Chimie. 3, 131–147. Google Scholar
    • Morgan M.J, Watamaniuk S.N& McKee S.P. 2000The use of an implicit standard for measuring discrimination thresholds. Vis. Res. 40, 2341–2349. Crossref, PubMed, ISIGoogle Scholar
    • Nascimento S.M& Foster D.H. 1997Detecting natural changes of cone-excitation ratios in simple and complex coloured images. Proc. R. Soc. B. 264, 1395–1402. Link, ISIGoogle Scholar
    • Nascimento S.M, Ferreira F.P& Foster D.H. 2002Statistics of spatial cone-excitation ratios in natural scenes. J. Opt. Soc. Am. A. 19, 1484–1490. CrossrefGoogle Scholar
    • Pugh E.N& Mollon J.D. 1979A theory of the Pi 1 and Pi 3 colour mechanisms of Stiles. Vis. Res. 19, 293–312. Crossref, PubMed, ISIGoogle Scholar
    • Rushton W.A.H. 1972Review lecture: pigments and signals in colour vision. J. Physiol. 220, 1P–31P. Crossref, PubMed, ISIGoogle Scholar
    • Rutherford M.D& Brainard D.H. 2002Lightness constancy: a direct test of the illumination-estimation hypothesis. Psychol. Sci. 13, 142–149. Crossref, PubMed, ISIGoogle Scholar
    • Rüttiger L, Braun D.I, Gegenfurtner K.R, Petersen D, Schönle P& Sharpe L.T. 1999Selective color constancy deficits after circumscribed unilateral brain lesions. J. Neurosci. 19, 3094–3106. Crossref, PubMed, ISIGoogle Scholar
    • Sällström PColour and physics: some remarks concerning the physical aspects of human colour vision. University of Stockholm, Institute of Physics Report1973pp. 73–109. Google Scholar
    • Schein S.J& Desimone R. 1990Spectral properties of V4 neurons in the macaque. J. Neurosci. 10, 3369–3389. Crossref, PubMed, ISIGoogle Scholar
    • Schiller P.H& Lee K. 1991The role of the primate extrastriate area V4 in vision. Science. 251, 1251–1253. Crossref, PubMed, ISIGoogle Scholar
    • Schirillo J.A& Shevell S.K. 2000Role of perceptual organization in chromatic induction. J. Opt. Soc. Am. A. 17, 244–254. CrossrefGoogle Scholar
    • Schnapf J.L, Nunn B.J, Meister M& Baylor D.A. 1990Visual transduction in cones of the monkey Macaca fascicularis. J. Physiol. 427, 681–713. Crossref, PubMed, ISIGoogle Scholar
    • Shafer S.A. 1985Using color to separate reflection components. Color Res. Appl. 10, 210–218. Crossref, ISIGoogle Scholar
    • Shevell S.K& Wei J. 1998Chromatic induction: border contrast or adaptation to surrounding light?. Vis. Res. 38, 1561–1566. Crossref, PubMed, ISIGoogle Scholar
    • Smithson H& Zaidi Q. 2004Colour constancy in context: roles for local adaptation and levels of reference. J. Vis. 4, 693–710. Crossref, PubMed, ISIGoogle Scholar
    • Speigle J.M& Brainard D.HIs color constancy task independent?. In Proceedings IS&T/SID 4th Color Imaging Conference, Scottsdale, AZ, November 19951996pp. 167-172. Google Scholar
    • Stiles W.S. 1939The directional sensitivity of the retina and the spectral sensitivities of the rods and cones. Proc. R. Soc. B. 127, 64–105. LinkGoogle Scholar
    • Stiles W.S. 1949Increment thresholds and the mechanisms of colour vision. Doc. Opthalmol. 3, 138–163. Crossref, PubMedGoogle Scholar
    • Stiles W.S. 1961Adaptation, chromatic adaptation, colour transformation. Anales de la Real Sociedad Espanola de Fisica y Quimica: Seria A. 57, 149–175. Google Scholar
    • Sugita Y. 2004Experience in early infancy is indispensable for color perception. Curr. Biol. 14, 1267–1271. Crossref, PubMed, ISIGoogle Scholar
    • Taylor A.H& Kerr G.P. 1941The distribution of energy in the visible spectrum of daylight. J. Opt. Soc. Am. 31, 3. CrossrefGoogle Scholar
    • Thouless R. 1931Phenomenal regression to the “real” object (I). Br. J. Psychol. 21, 339–359. Google Scholar
    • Tominaga S, Ebisui S& Wandell B.A. 2001Scene illuminant classification: brighter is better. J. Opt. Soc. Am. A. 18, 55–64. CrossrefGoogle Scholar
    • Troost J.M& de Weert C.M. 1991Naming versus matching in color constancy. Percept. Psychophys. 50, 591–602. Crossref, PubMedGoogle Scholar
    • von Kries, J. 1878 Beitrag zur Physiologie der Gesichtsempfindugen. [Transl. Physiology of visual sensations. In Sources of color science, (ed. D. L. MacAdam), pp. 101–108, 1st edn. Cambridge, MA: MIT press.]. Google Scholar
    • von Kries JDie Gesichtsempfindungen. Handbuch der Physiologie des Menschen& Nagel W vol. 31905pp. 109–282. Eds. Braunschweig:Vieweg und Sohn. Google Scholar
    • Vrhel M, Gershon R& Iwan L.S. 1994Measurement and analysis of object reflectance spectra. Color Res. Appl. 19, 4–9. Crossref, ISIGoogle Scholar
    • Wachtler T, Albright T.D& Sejnowski T.J. 2001Nonlocal interactions in color perception: nonlinear processing of chromatic signals from remote inducers. Vis. Res. 41, 1535–1546. Crossref, PubMed, ISIGoogle Scholar
    • Walsh V. 1999How does the cortex construct color?. Proc. Natl Acad. Sci. USA. 96, 13 594–13 596. Crossref, ISIGoogle Scholar
    • Wandell B.A& Wade A.R. 2003Functional imaging of the visual pathways. Neurol. Clin. North Am. 21, 417–443. Crossref, ISIGoogle Scholar
    • Wandell B.A, Baseler H.A, Poirson A.B, Boynton G.M& Engel S.AComputational neuroimaging: color tuning in two human cortical areas measured using fMRI. Color vision: from genes to perception, Gegenfurtner K.R& Sharpe L.T. 1999Cambridge University Press. Google Scholar
    • Webster M.A. 1996Human colour perception and its adaptation. Netw. Comput. Neural Syst. 7, 587–634. Crossref, ISIGoogle Scholar
    • Webster M.A& Mollon J.D. 1997Adaptation and the color statistics of natural images. Vis. Res. 37, 3283–3298. Crossref, PubMed, ISIGoogle Scholar
    • Westland S& Ripamonti C. 2000Invariant cone-excitation ratios may predict transparency. J. Opt. Soc. Am. A. 17, 255–264. CrossrefGoogle Scholar
    • Whittle PContrast colours. Colour perception, Mausfeld R& Heyer D. 2003New York:Oxford University Press. Google Scholar
    • Wolf K& Hurlbert AEffect of global contrast distribution on colour appearance. Normal and defective colour vision, Mollon J.D, Pokorny J& Knoblauch K. 2003Cambridge University Press. Google Scholar
    • Worthey J.A. 1985Limitations of color constancy. J. Opt. Soc. Am. A. 2, 1014–1026. CrossrefGoogle Scholar
    • Worthey J.A& Brill M.H. 1986Heuristic analysis of von Kries color constancy. J. Opt. Soc. Am. a. 3, 1708–1712. Crossref, PubMedGoogle Scholar
    • Wyszecki G.W& Stiles WColor science. 1982New York:Wiley. Google Scholar
    • Yang J.N& Maloney L.T. 2001Illuminant cues in surface color perception: tests of three candidate cues. Vis. Res. 41, 2581–2600. Crossref, PubMed, ISIGoogle Scholar
    • Yoshioka T, Dow B.M& Vautin R.G. 1996Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex. Behav. Brain Res. 76, 51–70. Crossref, PubMed, ISIGoogle Scholar
    • Zaidi Q. 1998Identification of illuminant and object colors: heuristic-based algorithms. J. Opt. Soc. Am. A. 15, 1767–1776. CrossrefGoogle Scholar
    • Zaidi Q. 2001Color constancy in a rough world. Color Res. Appl. 26, 192–200. Crossref, ISIGoogle Scholar
    • Zaidi Q, Spehar B& DeBonet J. 1997Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes. J. Opt. Soc. Am. A. 14, 2608–2621. CrossrefGoogle Scholar
    • Zeki S. 1983Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience. 9, 741–765. Crossref, PubMed, ISIGoogle Scholar
    • Zeki S. 1983The relationship between wavelength and color studied in single cells of monkey striate cortex. Progr. Brain Res. 58, 219–227. Crossref, PubMed, ISIGoogle Scholar
    • Zeki S, Aglioti S, McKeefry D& Berlucchi G. 1999The neurological basis of conscious color perception in a blind patient. Proc. Natl Acad. Sci. USA. 96, 14 124–14 129. Crossref, ISIGoogle Scholar