Philosophical Transactions of the Royal Society B: Biological Sciences
Restricted access

Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080

Günther Fischer

Günther Fischer

International Institute for Applied Systems Analysis (IIASA)Laxenburg, Austria

[email protected]

Google Scholar

Find this author on PubMed

,
Mahendra Shah

Mahendra Shah

International Institute for Applied Systems Analysis (IIASA)Laxenburg, Austria

Google Scholar

Find this author on PubMed

,
Francesco N. Tubiello

Francesco N. Tubiello

International Institute for Applied Systems Analysis (IIASA)Laxenburg, Austria

Goddard Institute for Space Studies, Columbia UniversityNY, USA

Google Scholar

Find this author on PubMed

and
Harrij van Velhuizen

Harrij van Velhuizen

International Institute for Applied Systems Analysis (IIASA)Laxenburg, Austria

Google Scholar

Find this author on PubMed

    A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological–economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5′×5′ latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change.

    References

    • Ainsworth E.A& Long S.P. 2005 What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analysis of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372.doi:10.1111/j.1469-8137.2004.01224.x. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • FAO 2001 The State of Food Insecurity in the World, 2001. Food and Agriculture Organization of the United Nations, Rome, Italy, ISBN 92-5-104628-X. Google Scholar
    • FAO World Agriculture: Towards 2015/1030. A FAO perspective p. 432 Eds. & Bruinsma Jelle. 2003 Rome:Food and Agricultural Organization of the United Nations. Google Scholar
    • Felzer B, Kicklighter D.W, Melillo J.M, Wang C, Zhuang Q& Prinn R. 2004 Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus. 56B, 230–248. CrossrefGoogle Scholar
    • Fischer G& Sun L. 2001 Model-based analysis of future land-use development in China. Agr. Ecosyst. Environ. 85, 163–176.doi:10.1016/S0167-8809(01)00182-7. . Crossref, Web of ScienceGoogle Scholar
    • Fischer G, Frohberg K, Parry M.L& Rosenzweig C. 1994 Climate change and world food supply, demand and trade: who benefits, who loses?. Global Environ. Change. 4, 7–23.doi:10.1016/0959-3780(94)90018-3. . Crossref, Web of ScienceGoogle Scholar
    • Fischer G, Frohberg K, Parry M.L& Rosenzweig C Impacts of potential climate change on global and regional food production and vulnerability. Climate change and world food security. & Downing E.T xxx vol. 137 1996pp. 115–159. Eds. Berlin:Springer-Verlag. Google Scholar
    • Fischer G, Frohberg K, Keyzer M.A& Parikh K.SLinked national models: a tool for international policy analysis1988 Dordrecht, The Netherlands:Kluwer Academic. Google Scholar
    • Fischer G, van Velthuizen H, Shah M& Nachtergaele F.O Global agro-ecological assessment for agriculture in the 21st century: methodology and results. IIASA RR-02-02 2002a Laxenburg, Austria:IIASA. Google Scholar
    • Fischer, G., Shah, M., & van Velthuizen, H. 2002b Climate Change and Agricultural Vulnerability, Special Report to the UN World Summit on Sustainable Development, Johannesburg 2002. Laxenburg, Austria: IIASA. Google Scholar
    • Flato G.M, Boer G.J, Lee W.G, McFarlane N.A, Ramsden D, Reader M.C& Weaver A.J. 2000 The Canadian centre for climate modelling and analysis global coupled model and its climate. Climate Dyn. 16, 451–467.doi:10.1007/s003820050339. . Crossref, Web of ScienceGoogle Scholar
    • Gordon H.B& O'Farrell S.P. 1997 Transient climate change in the CSIRO coupled model with dynamic sea ice. Mon. Weather Rev. 125, 875–907.doi:10.1175/1520-0493(1997)125<0875:TCCITC>2.0.CO;2. . Crossref, Web of ScienceGoogle Scholar
    • Gordon C, Cooper C.A, Banks H, Gregory J.M, Johns T.C, Mitchell J.F.B& Wood R.A. 2000 The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley centre coupled model without flux adjustments. Climate Dyn. 16, 147–168.doi:10.1007/s003820050010. . Crossref, Web of ScienceGoogle Scholar
    • Hirst A.C, Gordon H.B& O'Farrell S.P. 1997 Response of a coupled ocean-atmosphere model including oceanic eddy-induced advection to anthropogenic CO2 increase. Geophys. Res. Lett. 23, 3361–3364.doi:10.1029/96GL03234. . Crossref, Web of ScienceGoogle Scholar
    • IPCC Summary for policymakers, emissions scenarios. A Special Report of IPCC Working Group III, Intergovernmental Panel on Climate Change 2000 Cambridge, UK:Cambridge University Press. Google Scholar
    • IPCC, 2001a Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental panel on climate change, ISBN 0521-014-95-6. Google Scholar
    • IPCCIPCC climate change 2001: impacts, adaptation, and vulnerability2001b Cambridge, UK:Cambridge University Press. Google Scholar
    • Jablonski L.M, Wang X& Curtis P.S. 2002 Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol. 156, 9–26.doi:10.1046/j.1469-8137.2002.00494.x. . Crossref, Web of ScienceGoogle Scholar
    • Kimball B.A, Kobayashi K& Bindi M. 2002 Responses of agricultural crops to free-air CO2 enrichment. Adv. Agron. 77, 293–368. Crossref, Web of ScienceGoogle Scholar
    • Millennium Ecosystem AssessmentEcosystems and human well-being: synthesis2005 Washington, DC:Island Press. Google Scholar
    • Nakicenovic N, et al. 2003 IPCC SRES revisited: a response. Clim. Change. 14, 187–214. Google Scholar
    • Oberhuber J.M. 1993 Simulation of the Atlantic circulation with a coupled sea-ice mixed layer-isopycnal general circulation model. Part I: model description. J. Phys. Oceanogr. 13, 808–829.doi:10.1175/1520-0485(1993)023<0808:SOTACW>2.0.CO;2. . Crossref, Web of ScienceGoogle Scholar
    • Olesen J.E& Bindi M. 2002 Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 16, 239–262.doi:10.1016/S1161-0301(02)00004-7. . Crossref, Web of ScienceGoogle Scholar
    • Parry M.L, Rosenzweig C, Iglesias A, Fischer G& Livermore M.T.J. 1999 Climate change and world food security: a new assessment. Global Environ. Change. 9, 51–67.doi:10.1016/S0959-3780(99)00018-7. . Crossref, Web of ScienceGoogle Scholar
    • Parry M.L, et al. 2001 Millions at risk: defining critical climate change threats and targets. Global Environ. Change. 11, 181–183.doi:10.1016/S0959-3780(01)00011-5. . Crossref, Web of ScienceGoogle Scholar
    • Parry M.L, Rosenzweig C, Iglesias A, Livermore M& Fischer G. 2004 Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ. Change. 14, 53–67.doi:10.1016/j.gloenvcha.2003.10.008. . Crossref, Web of ScienceGoogle Scholar
    • Pope V.D, Gallani M.L, Rowntree P.R& Stratton R.A. 2000 The impact of new physical parametrizations in the Hadley Centre climate model—HadAM3. Climate Dyn. 16, 123–146.doi:10.1007/s003820050009. . Crossref, Web of ScienceGoogle Scholar
    • Reilly J, Tubiello F.N, McCarl B& Melillo J Climate change and agriculture in the United States. Climate change impacts on the United States: foundation, USGCRP , Melillo J, Janetos G& Karl T. 2001pp. 379–403. Eds. Cambridge, UK:Cambridge University Press. Google Scholar
    • Reilly J, et al. 2003 U.S. Agriculture and climate change: new results. Climatic Change. 57, 43–69. Crossref, Web of ScienceGoogle Scholar
    • Roeckner et al. 1992 Simulation of the present-day climate with the ECHAM 4 model: impact of model physics and resolution. Max-Planck Institute for Meteorology, Report No. 93, p. 171, Hamburg, Germany. Google Scholar
    • Roeckner, E. et al. 1996 The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck Institute for Meteorology, Report No. 218, p. 90, Hamburg, Germany. Google Scholar
    • Rosenzweig C& Parry M.L. 1994 Impacts of climate change on world food supply. Nature. 367, 133–138.doi:10.1038/367133a0. . Crossref, Web of ScienceGoogle Scholar
    • Rosenzweig, C. & Tubiello, F. N. In press. Interactions of adaptation and mitigation strategies in agriculture. Mitigation and adaptation strategies for climate change. Google Scholar
    • Rosenzweig C, Tubiello F.N, Goldberg R.A, Mills E& Bloomfield J. 2002 Increased crop damage in the U.S. from excess precipitation under climate change. Global Environ. Change. 12, 197–202.doi:10.1016/S0959-3780(02)00008-0. . Crossref, Web of ScienceGoogle Scholar
    • Rosenzweig C, Allen L.H, Harper L.A, Hollinger S.e& Jones J.W ASA Special Publication No. 59 1995 Madison, WI:ASA, CSSA and SSSA. Google Scholar
    • Steffen W, Sanderson A, Tyson P.D, Jäger J, Matson P.A, Moore B, Oldfield F, Richardson K, Schellnhuber H.J, Turner B.L& Wasson R.J. 2004 Berlin, Heidelberg, New York:Springer-Verlag. Google Scholar
    • Tsuji G.Y, Uehara G& Balas S. 1994 Honolulu, Hawaii:International Benchmark Sites Network for Agrotechnology Transfer, University of Hawaii. Google Scholar
    • Tubiello, F. N. 2005 Climate variability and agriculture: perspectives on current and future challenges. In Impact of climate change, variability and weather fluctuations on crops and their produce markets (ed. B. Knight), Impact Reports, Cambridge, UK. Google Scholar
    • Tubiello F.N, Jagtap S, Rosenzweig C, Goldberg R& Jones J.W. 2002 Effects of climate change on U.S. crop production from the National assessment. Simulation results using two different GCM scenarios. Part I: wheat, potato, corn, and citrus. Climate Res. 20, 259–270. Crossref, Web of ScienceGoogle Scholar
    • Tubiello F.N& Ewert F. 2002 Modeling the effects of elevated CO2 on crop growth and yield: a review. Eur. J. Agr. 18, 57–74.doi:10.1016/S1161-0301(02)00097-7. . Crossref, Web of ScienceGoogle Scholar
    • Investing in development. A practical plan to achieve the Millenium development goals. Report to the UN Secretary General. 2005. ISBN 1-884707-217-1, New York. Google Scholar
    • Washington W.M, et al. 2000 Parallel climate model (PCM) control and transient simulations. Climate Dyn. 16, 755–774.doi:10.1007/s003820000079. . Crossref, Web of ScienceGoogle Scholar
    • Watson R.T, Noble I.R, Bolin B, Ravindranath N.H& Verardo D.J Special report of the intergovernmental panel on climate change 2000 Cambridge, UK:Cambridge University Press. Google Scholar
    • WHOClimate change and human health—risks and responses2003 Geneva:WHO. Google Scholar
    • Williams J.R, Renard K.G& Dyke P.T. 1984 EPIC—a new model for assessing erosion's effect on soil productivity. J. Soil Water Conserv. 8, 381–383. Google Scholar