Philosophical Transactions of the Royal Society B: Biological Sciences
Published:https://doi.org/10.1098/rstb.2005.1777

    For centuries scientists have been fascinated with the question of how the brain works. Investigators have looked at both where different functions are localized and how the anatomical microstructure varies across the brain surface. Here we discuss how advances in magnetic resonance imaging (MRI) have allowed in vivo visualization of the fine structure of the brain that was previously only visible in post-mortem brains. We present data showing the correspondence between definitions of the primary visual cortex defined anatomically using very high-resolution MRI and functionally using functional MRI. We consider how this technology can be applied to allow the investigation of brains that differ from normal, and what this ever-evolving technology may be able to reveal about in vivo brain structure in the next few years.

    References

    • Amunts K, Malikovic A, Mohlberg H, Schormann T& Zilles K. 2000Brodmann's areas 17 and 18 brought into stereotaxic space—where and how variable?. Neuroimage. 11, 66–84.doi:10.1006/nimg.1999.0516. . Crossref, PubMed, ISIGoogle Scholar
    • Baillarger J.G.F. 1840Recherches sur la structure de la couche corticale des circonvolutions du cerveau. Mem. Acad. R. Med. 8, 149–183. Google Scholar
    • Barbier E.L, Marrett S, Danek A, Vortmeyer A, van Gelderen P, Duyn J, Bandettini P, Grafman J& Koretsky A.P. 2002Imaging cortical anatomy by high-resolution MR at 3.0t: detection of the stripe of Gennari in visual area 17. Magn. Reson. Med. 48, 735–738.doi:10.1002/mrm.10255. . Crossref, PubMed, ISIGoogle Scholar
    • Barbur J.L, Ruddock K.H& Waterfield V.A. 1980Human visual responses in the absence of the geniculo-calcarine projection. Brain. 103, 905–928. Crossref, PubMed, ISIGoogle Scholar
    • Barbur J.L, Watson J.D, Frackowiak R.S& Zeki S. 1993Conscious visual perception without v1. Brain. 116, 1293–1302. Crossref, PubMed, ISIGoogle Scholar
    • Baseler H.A, Morland A.B& Wandell B.A. 1999Topographic organization of human visual areas in the absence of input from primary cortex. J. Neurosci. 19, 2619–2627. Crossref, PubMed, ISIGoogle Scholar
    • Bridge H, Clare S, Jenkinson M, Jezzard P, Parker A.J& Matthews P.M. 2005Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. J. Vis. 5, 93–102.doi:10.1167/5.2.1. . Crossref, PubMed, ISIGoogle Scholar
    • Broca M.P. 1861Perte de la parole, ramollissement chronique et desstruction partielle du lob anterieur gauche de cerveau. Bull. Soc. Anthropol. 62, 235–238. Google Scholar
    • Brodmann KVergleichende lokalisationslehre der großhirnrinde in ihren prinzipeien dargestellt auf grund des zellenbaues. 1909Leipzig:Barth. Google Scholar
    • Clare, S., Jezzard, P. & Matthews, P. M. 2002 Identification of the myelinated layers in striate cortex on high resolution mri at 3 tesla. Paper presented at the Proc. Int. Soc. Magnetic Resonance in Medicine. Google Scholar
    • Clark V.P, Courchesne E& Grafe M. 1992In vivo myeloarchitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging. Cereb. Cortex. 2, 417–424. Crossref, PubMed, ISIGoogle Scholar
    • Clarke S& Miklossy J. 1990Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas. J. Comp. Neurol. 298, 188–214.doi:10.1002/cne.902980205. . Crossref, PubMed, ISIGoogle Scholar
    • Cowey A& Stoerig P. 2004Stimulus cueing in blindsight. Prog. Brain Res. 144, 261–277.doi:10.1016/S0079-6123(03)14418-4. . Crossref, PubMed, ISIGoogle Scholar
    • DeYoe E.A, Carman G.J, Bandettini P, Glickman S, Wieser J, Cox R, Miller D& Neitz J. 1996Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl Acad. Sci. USA. 93, 2382–2386.doi:10.1073/pnas.93.6.2382. . Crossref, PubMed, ISIGoogle Scholar
    • de Zwart J.A, Ledden P.J, van Gelderen P, Bodurka J, Chu R& Duyn J.H. 2004Signal-to-noise ratio and parallel imaging performance of a 16-channel receive-only brain coil array at 3.0 Tesla. Magn. Reson. Med. 51, 22–26.doi:10.1002/mrm.10678. . Crossref, PubMed, ISIGoogle Scholar
    • Eickhoff S, Walters N.B, Schleicher A, Kril J, Egan G.F, Zilles K, Watson J.D.G& Amunts K. 2005High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum. Brain Mapp. 24, 206–215.doi:10.1002/hbm.20082. . Crossref, PubMed, ISIGoogle Scholar
    • Elliott Smith G. 1907A new topographical survey of the human cerebral cortex being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J. Anat. Physiol. 41, 237–254. PubMedGoogle Scholar
    • Engel S.A, Rumelhart D.E, Wandell B.A, Lee A.T, Glover G.H, Chichilnisky E.J& Shadlen M.N. 1994fMRI of human visual cortex. Nature. 369, 525doi:10.1038/369525a0. . Crossref, PubMed, ISIGoogle Scholar
    • Engel S.A, Glover G.H& Wandell B.A. 1997Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex. 7, 181–192.doi:10.1093/cercor/7.2.181. . Crossref, PubMed, ISIGoogle Scholar
    • Fischl B& Dale A.M. 2000Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl Acad. Sci. USA. 97, 11 050–11 055.doi:10.1073/pnas.200033797. . Crossref, ISIGoogle Scholar
    • Fischl B, Salat D.H, van der Kouwe A.J.W, Makris N, Segonne F, Quinn B.T& Dale A.M. 2004Sequence-independent segmentation of magnetic resonance images. Neuroimage. 23, S69–S84.doi:10.1016/j.neuroimage.2004.07.016. . Crossref, PubMed, ISIGoogle Scholar
    • Gall F.J& Spurzheim J.G vol. 11810Paris. Google Scholar
    • Garey L.JBrodmann's localisation in the cerebral cortex. 2nd edn.1999London:Imperial College Press. Google Scholar
    • Gennari FFrancisci gennari parmensis medicinae doctoris collegiati de peculiari structura cerebri nonnullisque eius morbis–paucae aliae anatom. Observat. Accedunt. 1782Parma, Italy:Regio Typographeo. Google Scholar
    • Huk A.C, Dougherty R.F& Heeger D.J. 2002Retinotopy and functional subdivision of human areas MT and MST. J. Neurosci. 22, 7195–7205. Crossref, PubMed, ISIGoogle Scholar
    • Marcar V.L, Zihl J& Cowey A. 1997Comparing the visual deficits of a motion blind patient with the visual deficits of monkeys with area MT removed. Neuropsychologia. 35, 1459–1465.doi:10.1016/S0028-3932(97)00057-2. . Crossref, PubMed, ISIGoogle Scholar
    • Rademacher J, Burgel U, Geyer S, Schormann T, Schleicher A, Freund H.J& Zilles K. 2001Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain. 124, 2232–2258.doi:10.1093/brain/124.11.2232. . Crossref, PubMed, ISIGoogle Scholar
    • Robitaille P.L, Abduljalil A.M& Kangarlu A. 2000Ultra high resolution imaging of the human head at 8 Tesla. J. Comput. Assist. Tomogr. 24, 2–8.doi:10.1097/00004728-200001000-00002. . Crossref, PubMed, ISIGoogle Scholar
    • Sereno M.I, Dale A.M, Reppas J.B, Kwong K.K, Belliveau J.W, Brady T.J, Rosen B.R& Tootell R.B. 1995Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 268, 889–893. Crossref, PubMed, ISIGoogle Scholar
    • Tootell R.B& Taylor J.B. 1995Anatomical evidence for MT and additional cortical visual areas in humans. Cereb. Cortex. 5, 39–55. Crossref, PubMed, ISIGoogle Scholar
    • von Economo C.F& Koskinas G.NThe cytoarchitectonics of the human cerebral cortex (S. Parker, Transl.). 1929London:Oxford University Press. Google Scholar
    • Walters N.B, Egan G.F, Kril J.J, Kean M, Waley P, Jenkinson M& Watson J.D.G. 2003In vivo identification of human cortical areas using high-resolution MRI: an approach to cerebral structure–function correlation. Proc. Natl Acad. Sci. USA. 100, 2981–2986.doi:10.1073/pnas.0437896100. . Crossref, PubMed, ISIGoogle Scholar
    • Watson J.D, Myers R, Frackowiak R.S, Hajnal J.V, Woods R.P, Mazziotta J.C, Shipp S& Zeki S. 1993Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex. 3, 79–94. Crossref, PubMed, ISIGoogle Scholar
    • Wiggins G.C, Potthast A, Triantafyllou C, Wiggind C.J& Wald L.L. 2005Eight-channel phased array coil and detunable TEM volume coil for 7 T brain imaging. Magn. Reson. Med. 54, 235–240.doi:10.1002/mrm.20547. . Crossref, PubMed, ISIGoogle Scholar
    • Zeki S.M. 1970Interhemispheric connections of prestriate cortex in monkey. Brain Res. 19, 63–75.doi:10.1016/0006-8993(70)90237-4. . Crossref, PubMed, ISIGoogle Scholar
    • Zeki S, Watson J.D, Lueck C.J, Friston K.J, Kennard C& Frackowiak R.S. 1991A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11, 641–649. Crossref, PubMed, ISIGoogle Scholar
    • Zhu Y, et al.2004Highly parallel volumetric imaging with a 32-element RF coil array. Magn. Reson. Med. 52, 869–877.doi:10.1002/mrm.20209. . Crossref, PubMed, ISIGoogle Scholar