Philosophical Transactions of the Royal Society B: Biological Sciences

    The last 3.85 Gyr of Earth history have been divided into five stages. During stage 1 (3.85–2.45 Gyr ago (Ga)) the atmosphere was largely or entirely anoxic, as were the oceans, with the possible exception of oxygen oases in the shallow oceans.

    During stage 2 (2.45–1.85 Ga) atmospheric oxygen levels rose to values estimated to have been between 0.02 and 0.04 atm. The shallow oceans became mildly oxygenated, while the deep oceans continued anoxic.

    Stage 3 (1.85–0.85 Ga) was apparently rather ‘boring’. Atmospheric oxygen levels did not change significantly. Most of the surface oceans were mildly oxygenated, as were the deep oceans.

    Stage 4 (0.85–0.54 Ga) saw a rise in atmospheric oxygen to values not much less than 0.2 atm. The shallow oceans followed suit, but the deep oceans were anoxic, at least during the intense Neoproterozoic ice ages. Atmospheric oxygen levels during stage 5 (0.54 Ga–present) probably rose to a maximum value of ca 0.3 atm during the Carboniferous before returning to its present value. The shallow oceans were oxygenated, while the oxygenation of the deep oceans fluctuated considerably, perhaps on rather geologically short time-scales.

    References

    • Anbar A.D& Knoll A.H. 2002Proterozoic ocean chemistry and evolution: a bioinorganic bridge?. Science. 297, 1137–1142.doi:10.1126/science.1069651. . Crossref, PubMed, ISIGoogle Scholar
    • Armstrong R.A, Lee C, Hedges J.L, Honjo S& Wakeham S.G. 2002A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II. 49, 219–236. Crossref, ISIGoogle Scholar
    • Arnold G.L, Anbar A.D, Barling J& Lyons T.W. 2004Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science. 304, 87–90.doi:10.1126/science.1091785. . Crossref, PubMed, ISIGoogle Scholar
    • Arthur, M. A. 2005 Oceanic anoxic events: carbon and nitrogen isotope signatures and their implications. Earth System Processes 2, abstract with programs, 50. Google Scholar
    • Arthur M.A, Dean W.E& Schlanger S.OVariations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. The carbon cycle and atmospheric CO2: natural variations Archean to present, Sundquist E.T& Broecker W.S. 1985pp. 504–529. Eds. Washington, DC:American Geophysical Union. Google Scholar
    • Barley M.E, Bekker A& Krapez B. 2005Late Archean to early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 238, 156–171. Crossref, ISIGoogle Scholar
    • Bekker A, Holland H.D, Young G.M& Nesbitt H.W. 2003Fe2O3/FeO ratio in average shale through time: a reflection of the stepwise oxidation of the atmosphere. Geol. Soc. Am. 34, 83abstract with programs. Google Scholar
    • Bekker A, Holland H.D, Wang P.-L, Rumble D, Stein H.J, Hannah J.L, Coetzee L.L& Beukes N.J. 2004Dating the rise of atmospheric oxygen. Nature. 427, 117–120.doi:10.1038/nature02260. . Crossref, PubMed, ISIGoogle Scholar
    • Berner R.AThe Phanerozoic carbon cycle: CO2 and O2. 2004Oxford, UK:Oxford University Press. Google Scholar
    • Bjerrum C.J& Canfield D.E. 2002Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption on iron oxides. Nature. 417, 519–562.doi:10.1038/417159a. . Crossref, ISIGoogle Scholar
    • Brasier M, Mc Loughlin N, Green O& Wacey D. 2006Critical testing of the earliest cellular fossils and microtubules. Phil. Trans. R. Soc. B. 361, 887–902.doi:10.1098/rstb.2006.1835. . Link, ISIGoogle Scholar
    • Brocks J.J, Buick R, Summons R.E& Logan G.A. 2003A reconstruction of Archean biological diversity based on molecular fossils from the 2.78–2.45 billion year old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim. Cosmochim. Acta. 67, 4321–4335.doi:10.1016/S0016-7037(03)00209-6. . Crossref, ISIGoogle Scholar
    • Broecker W.S& Peng T.-HTracers in the sea. 1982New York, NY:Eldigio Press. Google Scholar
    • Butterfield N.J& Rainbird R.H. 1998Diverse organic-walled fossils, including “possible dinoflagellates,” from the early Neoproterozoic of arctic Canada. Geology. 26, 963doi:10.1130/0091-7613(1998)026<0963:DOWFIP>2.3.CO;2. . Crossref, ISIGoogle Scholar
    • Canfield D.E. 1998A new model for Proterozoic ocean chemistry. Nature. 396, 450–453.doi:10.1038/24839. . Crossref, ISIGoogle Scholar
    • Canfield D.E. 2005The early history of atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 33, 1–36.doi:10.1146/annurev.earth.33.092203.122711. . Crossref, ISIGoogle Scholar
    • Colman A.S& Holland H.DThe global diagenetic flux of phosphorus from marine sediments. Marine authigenesis: from global to microbial. , Glenn G.R, Prévôt-Lucas L& Lucas JSEPM Special Publication vol. 662000. Google Scholar
    • Conway Morris S. 2006Darwin's dilemma: the realities of the Cambrian ‘explosion’. Phil. Trans. R. Soc. B. 361, 1069–1083.doi:10.1098/rstb.2006.1846. . Link, ISIGoogle Scholar
    • Cook P.J& McElhinny M.W. 1979A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Econ. Geol. 74, 315–330. Crossref, ISIGoogle Scholar
    • p. 386 Eds. Cook P.M& Shergold J.HProterozoic and Cambrian phosphorites vol. 11986Cambridge, UK:Cambridge University Press. Google Scholar
    • Dudley R. 1998Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J. Exp. Biol. 201, 1043–1050. Crossref, PubMed, ISIGoogle Scholar
    • Farquhar J, Bao H& Thiemens M. 2000Atmospheric influence of Earth's earliest sulfur cycle. Science. 289, 756–758.doi:10.1126/science.289.5480.756. . Crossref, PubMed, ISIGoogle Scholar
    • Farquhar J, Wing B.A, McKeegan K.D, Harris J.W, Cartigny P& Thiemens M.H. 2002Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science. 298, 2369–2372.doi:10.1126/science.1078617. . Crossref, PubMed, ISIGoogle Scholar
    • Feely R.A, Trefry J.H, Lebon G.T& German C.R. 1998P/Fe and V/Fe ratios in hydrothermal precipitates: potential new paleo-proxies for dissolved phosphate in seawater. Geophys. Res. Lett. 25, 2253–2256.doi:10.1029/98GL01546. . Crossref, ISIGoogle Scholar
    • Frakes L& Bolton B. 1992Effects of ocean chemistry, sea level, and climate on the formation of primary sedimentary manganese ore deposits. Econ. Geol. 87, 1207–1217. Crossref, ISIGoogle Scholar
    • Francois R, Honjo S, Krishfield R& Manganini S. 2002Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. Global Biogeochemical Cycles. 16, no. 4,1087doi:10.1029/2001GB001722. . ISIGoogle Scholar
    • Gellatly A.M& Lyons T.W. 2005Trace sulfate in mid-Proterozoic carbonates and the sulfur isotope record of biospheric evolution. Geochim. Cosmochim. Acta. 69, 3813–3829.doi:10.1016/j.gca.2005.01.019. . Crossref, ISIGoogle Scholar
    • Graham J.B, Dudley R, Aguilar N& Gans C. 1995Implications of the late Paleozoic oxygen pulse for physiology and evolution. Nature. 375, 117–120.doi:10.1038/375117a0. . Crossref, ISIGoogle Scholar
    • Halverson G.P, Hoffman P.F, Schrag D.P, Maloof A.C& Rice A.H. 2005Toward a Neoproterozoic composite carbon-isotope record. GSA Bull. 117, 1181–1207. CrossrefGoogle Scholar
    • Hayes J.MGlobal methanotrophy at the Archean–Proterozoic transition. Early life on earth. & Bengtson SNobel Symposium 841994pp. 220–236. Eds. New York, NY:Columbia University Press. Google Scholar
    • Hoffman, P. F. In press. On the glacial history of snowball earth: “exercising the imaginative muscle”. S. Afr. J. Geol. Google Scholar
    • Hoffman P.F& Schrag D.P. 2002The snowball Earth hypothesis: testing the limits of global change. Terra Nova. 14, 129–155.doi:10.1046/j.1365-3121.2002.00408.x. . Crossref, ISIGoogle Scholar
    • Holland H.DThe chemical evolution of the atmosphere and oceans. 1984Princeton, NJ:Princeton University Pressp. 582. Google Scholar
    • Holland H.DEarly Proterozoic atmospheric change. Early life on earth. & Bengtson SNobel Symposium vol. 841994pp. 237–244. Eds. New York, NY:Columbia University Press. Google Scholar
    • Holland H.D. 2002Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta. 66, 3811–3826.doi:10.1016/S0016-7037(02)00950-X. . Crossref, ISIGoogle Scholar
    • Holland H.D& Beukes N.J. 1990A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. Am. J. Sci. 290-A, 1–34. PubMed, ISIGoogle Scholar
    • Horita J, Zimmermann H& Holland H.D. 2002Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim. Cosmochim. Acta. 66, 3733–3756.doi:10.1016/S0016-7037(01)00884-5. . Crossref, ISIGoogle Scholar
    • Hu G.X, Rumble D& Wang P.L. 2003An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochim. Cosmochim. Acta. 67, 3101–3118.doi:10.1016/S0016-7037(02)00929-8. . Crossref, ISIGoogle Scholar
    • Isley A.E& Abbott D.H. 1999Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. 104, 15 461–15 477.doi:10.1029/1999JB900066. . Crossref, ISIGoogle Scholar
    • Karhu J.A& Holland H.D. 1996Carbon isotopes and the rise of atmospheric oxygen. Geology. 24, 867–870.doi:10.1130/0091-7613(1996)024<0867:CIATRO>2.3.CO;2. . Crossref, ISIGoogle Scholar
    • Kasting, J., & Ono, S. 2006. Paleoclimates: the first two billion years. In Major steps in cell evolution: evidence, timing and global impact. London: The Royal Society. Google Scholar
    • Kasting J.F, Pavlov A.A& Siefert J.L. 2001A coupled ecosystem–climate model for predicting the methane concentration in the Archean atmosphere. Orig. Life Evol. Biosphere. 31, 271–285.doi:10.1023/A:1010600401718. . Crossref, PubMed, ISIGoogle Scholar
    • Klaas C& Archer D.A. 2002Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Global Biogeochemical Cycles. 16, no. 4, 1116doi:10.1029/2001GB001765. . ISIGoogle Scholar
    • Knoll A.H, Javaux E.J, Hewitt D& Cohen P. 2006Geological perspectives on the early diversification of eukaryotic organisms. Phil. Trans. R. Soc. B. 361, 1023–1038.doi:10.1098/rstb.2006.1843. . Link, ISIGoogle Scholar
    • Lane NOxygen, the molecule that made the world. 2002Oxford, UK:Oxford University Press. Google Scholar
    • Logan G.A, Hayes J.M, Hieshima G.B& Summons R.E. 1995Terminal Proterozoic reorganisation of biogeochemical cycles. Nature. 376, 53–56.doi:10.1038/376053a0. . Crossref, PubMed, ISIGoogle Scholar
    • Mao J, Lehmann B, Du A, Zhang G, Ma D& Wang Y. 2002Re–Os dating of polymetallic Ni–Mo–PGE–Au mineralization in Lower Cambrian black shales of South China and its geologic significance. Econ. Geol. 97, 1051–1061.doi:10.2113/97.5.1051. . Crossref, ISIGoogle Scholar
    • Melezhik V.A, Fallick A.E, Rychanchik D.V& Kuznetsov A.B. 2005Palaeoproterozoic evaporites in Fennoscandia: implications for seawater sulphate, the rise of atmospheric oxygen and local amplification of the δ13C excursion. Terra Nova. 17, 141–148.doi:10.1111/j.1365-3121.2005.00600.x. . Crossref, ISIGoogle Scholar
    • Miller K.G& Fairbanks R.GOligocene to Miocene global carbon isotope cycles and abyssal circulation changes. The carbon cycle and atmospheric CO2: natural variations Archean to the present, Sundquist E.T& Broecker W.S. 1985pp. 469–486. Eds. Washington, DC:American Geophysical Union. Google Scholar
    • Mojzsis S.J, Coath C.D, Greenwood J.P, McKeegan K.D& Harrison T.M. 2003Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim. Cosmochim. Acta. 67, 1635–1658.doi:10.1016/S0016-7037(03)00059-0. . Crossref, ISIGoogle Scholar
    • Nothold, A. J. G., Sheldon, R. P. 1986 Chapter 2. In Phosphate deposits of the world, vol. 1. Proterozoic and Cambrian phosphorites (ed. P. J. Cook & J. H. Shergold). Cambridge, UK: University Press Cambridge. Google Scholar
    • Ono S, Eigenbrode J.L, Pavlov A.A, Kharecha P, Rumble D, Kasting J.F& Freeman K.H. 2003New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet Sci. 213, 15–30.doi:10.1016/S0012-821X(03)00295-4. . Crossref, ISIGoogle Scholar
    • Pavlov A.A& Kasting J.F. 2002Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology. 2, 27–41.doi:10.1089/153110702753621321. . Crossref, PubMed, ISIGoogle Scholar
    • Pierson B.KThe emergence, diversification, and role of photosynthetic bacteria. Early life on earth& Bengtson S. 1994pp. 161–180. Eds. New York, NY:Columbia University Press. Google Scholar
    • Porter S.M& Knoll A.H. 2000Neoproterozoic testate amoebae: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology. 26, 360–385. Crossref, ISIGoogle Scholar
    • Porter S.M, Meisterfeld R& Knoll A.H. 2003Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. J. Paleontol. 77, 205–255. Crossref, ISIGoogle Scholar
    • Roy S. 1992Environments and processes of manganese deposition. Econ. Geol. 87, 1218–1236. Crossref, ISIGoogle Scholar
    • Roy SGenetic diversity of manganese deposition in the terrestrial geological record. Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. , Nicholson K, Hein J.R, Bühn B& Dasgupta SGeological Society Special Publication vol. 1191997. Google Scholar
    • Rozendaal A& Stumpfl E.F. 1984Mineral chemistry and genesis of Gamsberg zinc deposit, South Africa. Trans. Inst. Min. Metall. Sect. B Appl. Earth Sci. 98, B161–B175. Google Scholar
    • Saltzman M.R. 2005Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology. 33, 573–576.doi:10.1130/G21535.1. . Crossref, ISIGoogle Scholar
    • Schopf J.WThe oldest known records of life: early Archean stromatolites, microfossils, and organic mattter. Early life on earth& Bengtson S. 1994pp. 193–206. Eds. New York, NY:Columbia University Press. Google Scholar
    • Schopf J.W. 2006Fossil evidence of Archaean life. Phil. Trans. R. Soc. B. 361, 869–885.doi:10.1098/rstb.2006.1834. . Link, ISIGoogle Scholar
    • Shaffer G. 1986Phosphate pumps and shuttles in the Black Sea. Nature. 321, 515–517.doi:10.1038/321515a0. . Crossref, ISIGoogle Scholar
    • Shen Y, Canfield D.E& Knoll A.H. 2002Middle Proterozoic ocean chemistry: evidence from the McArthur Basin, Northern Australia. Am. J. Sci. 302, 81–109. Crossref, ISIGoogle Scholar
    • Shields G& Veizer J. 2002Precambrian marine carbonate isotope database: version 1.1. Geochem. Geophys. Geosyst. 3, 12doi:10.1029/2001GC000266. . Crossref, ISIGoogle Scholar
    • Slack, J. F., Bekker, A., Rouxel, O. J. & Lindberg, P. A. 2005 Suboxic deep seawater at ca. 1.74 Ga: evidence from seafloor-hydrothermal jasper and iron-formation in the Jerome District, Arizona. National Meeting of the Geological Society of America, abstract with programs. Google Scholar
    • Summons R.E, Bradley A.S, Jahnke L.L& Waldbauer J.R. 2006Steroids, triterpenoids and molecular oxygen. Phil. Trans. R. Soc. B. 361, 951–968.doi:10.1098/rstb.2006.1837. . Link, ISIGoogle Scholar
    • Watanabe, Y., Klarke, A. I., Poulson, S. & Ohmoto, H. 2005 The absence of mass independent sulfur isotope fractionation in Archean sedimentary rocks: evidence for an oxic atmosphere? Earth System Processes 2, Calgary, Alberta, Canada, abstract with programs 34. Google Scholar
    • Wheat C.G, Feely R.A& Mottl M.J. 1996Phosphate removal by oceanic hydrothermal processes: an update of the phosphate budget of the oceans. Geochim. Cosmochim. Acta. 60, 3593–3608.doi:10.1016/0016-7037(96)00189-5. . Crossref, ISIGoogle Scholar
    • Yamaguchi, K. 2002 Geochemistry of Archean Paleoproterozoic black shales: the early evolution of the atmosphere, oceans, and biosphere. Ph.D. thesis, The Pennsylvania State University. Google Scholar
    • Yang W& Holland H.D. 2003The Hekpoort paleosol profile in Strata 1 at Gaborone, Botswana: soil formation during the Great Oxidation Event. Am. J. Sci. 303, 187–220. Crossref, ISIGoogle Scholar
    • Young G.M, Von Brunn V, Gold D.J.C& Minter W.E.L. 1998Earth's oldest reported glaciation: physical and chemical evidence from the Archean Mozaan Group (∼2.9 Ga) of South Africa. J. Geol. 106, 523–538. Crossref, ISIGoogle Scholar