The bacterial species definition in the genomic era
Abstract
The bacterial species definition, despite its eminent practical significance for identification, diagnosis, quarantine and diversity surveys, remains a very difficult issue to advance. Genomics now offers novel insights into intra-species diversity and the potential for emergence of a more soundly based system. Although we share the excitement, we argue that it is premature for a universal change to the definition because current knowledge is based on too few phylogenetic groups and too few samples of natural populations. Our analysis of five important bacterial groups suggests, however, that more stringent standards for species may be justifiable when a solid understanding of gene content and ecological distinctiveness becomes available. Our analysis also reveals what is actually encompassed in a species according to the current standards, in terms of whole-genome sequence and gene-content diversity, and shows that this does not correspond to coherent clusters for the environmental Burkholderia and Shewanella genera examined. In contrast, the obligatory pathogens, which have a very restricted ecological niche, do exhibit clusters. Therefore, the idea of biologically meaningful clusters of diversity that applies to most eukaryotes may not be universally applicable in the microbial world, or if such clusters exist, they may be found at different levels of distinction.
Footnotes
References
Alland D, 2003Modeling bacterial evolution with comparative-genome-based marker systems: application to Mycobacterium tuberculosis evolution and pathogenesis. J. Bacteriol. 185, 3392–3399.doi:10.1128/JB.185.11.3392-3399.2003. . Crossref, PubMed, ISI, Google ScholarAltschul S.F, Madden T.L, Schaffer A.A, Zhang J, Zhang Z, Miller W& Lipman D.J . 1997Gapped Blast and PSI-Blast: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.doi:10.1093/nar/25.17.3389. . Crossref, PubMed, ISI, Google ScholarBaldwin A, 2005Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J. Clin. Microbiol. 43, 4665–4673.doi:10.1128/JCM.43.9.4665-4673.2005. . Crossref, PubMed, ISI, Google ScholarBoyd E.F& Brussow H . 2002Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol. 10, 521–529.doi:10.1016/S0966-842X(02)02459-9. . Crossref, PubMed, ISI, Google ScholarBrenner D, Staley J& Krieg N Bergey's manual of systematic bacteriology. Classification of prokaryotic organisms and the concept of Bacterial speciation2000New York, NY:Springer. Google ScholarByappanahalli M.N, Whitman R.L, Shively D.A, Sadowsky M.J& Ishii S . 2006Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed. Environ. Microbiol. 8, 504–513.doi:10.1111/j.1462-2920.2005.00916.x. . Crossref, PubMed, ISI, Google ScholarChain P.S, 2004Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA. 101, 13 826–13 831.doi:10.1073/pnas.0404012101. . Crossref, ISI, Google Scholar- Chimpanzee Consortium. 2005Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 437, 69–87.doi:10.1038/nature04072. . Crossref, PubMed, ISI, Google Scholar
Cohan F.M . 2001Bacterial species and speciation. Syst. Biol. 50, 513–524. Crossref, PubMed, ISI, Google ScholarCohan F.M . 2002What are bacterial species?. Annu. Rev. Microbiol. 56, 457–487.doi:10.1146/annurev.micro.56.012302.160634. . Crossref, PubMed, ISI, Google ScholarColeman M.L, Sullivan M.B, Martiny A.C, Steglich C, Barry K, Delong E.F& Chisholm S.W . 2006Genomic islands and the ecology and evolution of Prochlorococcus. Science. 311, 1768–1770.doi:10.1126/science.1122050. . Crossref, PubMed, ISI, Google ScholarDykhuizen D.E& Green L . 1991Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173, 7257–7268. Crossref, PubMed, ISI, Google ScholarEnard W, 2002Intra- and interspecific variation in primate gene expression patterns. Science. 296, 340–343.doi:10.1126/science.1068996. . Crossref, PubMed, ISI, Google ScholarFeil E.J, 2001Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl Acad. Sci. USA. 98, 182–187.doi:10.1073/pnas.98.1.182. . Crossref, PubMed, ISI, Google Scholar- Felsenstein, J. 2004 Phylip (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. Google Scholar
Filliol I, 2006Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J. Bacteriol. 188, 759–772.doi:10.1128/JB.188.2.759-772.2006. . Crossref, PubMed, ISI, Google ScholarGarrity G, Bell J& Lilburn T Bergey's manual of systematic bacteriology. 2004New York, NY:Springer. Google ScholarGevers D, 2005Opinion: re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3, 733–739.doi:10.1038/nrmicro1236. . Crossref, PubMed, ISI, Google Scholar- Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. & Tiedje, J. M. In press. DNA–DNA hybridization values and their relation to whole genome sequence similarities, Int. J. Syst. Evol. Microbiol. Google Scholar
Grey T& Williams S . 1971Microbial productivity in soil. Symp. Soc. Gen. Microbiol. 21, 255–286. Google Scholar- Hallam, S. J., Konstantinidis, K. T., Brochier, C., Putnam, N., Schleper, C., Preston, C. M., de la Torre, J., Richardson, P. M. & DeLong, E. F. Submitted. Genomic analysis of a symbiotic marine crenarchaeon, Cenarchaeum symbiosum. Google Scholar
Hoffmaster A.R, 2004Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl Acad. Sci. USA. 101, 8449–8454.doi:10.1073/pnas.0402414101. . Crossref, PubMed, ISI, Google ScholarHolden M.T, 2004Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl Acad. Sci. USA. 101, 14 240–14 245.doi:10.1073/pnas.0403302101. . Crossref, ISI, Google ScholarHughes A.L& Friedman R . 2005Nucleotide substitution and recombination at orthologous loci in Staphylococcus aureus. J. Bacteriol. 187, 2698–2704.doi:10.1128/JB.187.8.2698-2704.2005. . Crossref, PubMed, ISI, Google ScholarHull D.L Species: the units of biodiversity. The ideal species concept—and why we can't get it1997London, UK:Chapman and Hall. Google ScholarHuys G, Cnockaert M, Janda J.M& Swings J . 2003Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int. J. Syst. Evol. Microbiol. 53, 807–810.doi:10.1099/ijs.0.02475-0. . Crossref, PubMed, ISI, Google ScholarHyma K.E, Lacher D.W, Nelson A.M, Bumbaugh A.C, Janda J.M, Strockbine N.A, Young V.B& Whittam T.S . 2005Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J. Bacteriol. 187, 619–628.doi:10.1128/JB.187.2.619-628.2005. . Crossref, PubMed, ISI, Google ScholarIshii S, Ksoll W.B, Hicks R.E& Sadowsky M.J . 2006Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Appl. Environ. Microbiol. 72, 612–621.doi:10.1128/AEM.72.1.612-621.2006. . Crossref, PubMed, ISI, Google ScholarJackson J.H, Harrison S.H& Herring P.A . 2002A theoretical limit to coding space in chromosomes of bacteria. Omics. 6, 115–121.doi:10.1089/15362310252780861. . Crossref, PubMed, Google ScholarKonstantinidis K.T& Tiedje J.M . 2004Trends between gene content and genome size in prokaryotic species with larger genomes. Proc. Natl Acad. Sci. USA. 101, 3160–3165.doi:10.1073/pnas.0308653100. . Crossref, PubMed, ISI, Google ScholarKonstantinidis K.T& Tiedje J.M . 2005Genomic insights that advance the species definition for prokaryotes. Proc. Natl Acad. Sci. USA. 102, 2567–2572.doi:10.1073/pnas.0409727102. . Crossref, PubMed, ISI, Google Scholar- Konstantinidis, K. T., Ramette, A. & Tiedje, J. M. In press. Genomic evaluations and improvements on single and multi locus sequence typing methods for studying intra-species diversity. J. Appl. Environ. Microbiol. Google Scholar
Lerat E& Ochman H . 2005Recognizing the pseudogenes in bacterial genomes. Nucleic Acids Res. 33, 3125–3132.doi:10.1093/nar/gki631. . Crossref, PubMed, ISI, Google ScholarMaiden M.C, 1998Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl Acad. Sci. USA. 95, 3140–3145.doi:10.1073/pnas.95.6.3140. . Crossref, PubMed, ISI, Google ScholarMajewski J, Zawadzki P, Pickerill P, Cohan F.M& Dowson C.G . 2000Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182, 1016–1023.doi:10.1128/JB.182.4.1016-1023.2000. . Crossref, PubMed, ISI, Google ScholarMartiny J.B, 2006Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112.doi:10.1038/nrmicro1341. . Crossref, PubMed, ISI, Google ScholarMayr E Systematics and the origin of species from the viewpoint of a zoologist. 1997New York, NY:Columbia University Press. Google ScholarMoran N.A . 2002Microbial minimalism: genome reduction in bacterial pathogens. Cell. 108, 583–586.doi:10.1016/S0092-8674(02)00665-7. . Crossref, PubMed, ISI, Google ScholarNesbo C.L, Dlutek M& Doolittle W.F . 2006Recombination in Thermotoga: implications for species concepts and biogeography. Genetics. 172, 759–769.doi:10.1534/genetics.105.049312. . Crossref, PubMed, ISI, Google ScholarNierman W.C, 2004Structural flexibility in the Burkholderia mallei genome. Proc. Natl Acad. Sci. USA. 101, 14 246–14 251.doi:10.1073/pnas.0403306101. . Crossref, ISI, Google ScholarOchman H& Davalos L.M . 2006The nature and dynamics of bacterial genomes. Science. 311, 1730–1733.doi:10.1126/science.1119966. . Crossref, PubMed, ISI, Google ScholarPapke R.T, Ramsing N.B, Bateson M.M& Ward D.M . 2003Geographical isolation in hot spring cyanobacteria. Environ. Microbiol. 5, 650–659.doi:10.1046/j.1462-2920.2003.00460.x. . Crossref, PubMed, ISI, Google ScholarPearson T, 2004Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc. Natl Acad. Sci. USA. 101, 13 536–13 541.doi:10.1073/pnas.0403844101. . Crossref, ISI, Google ScholarPreston C.M, Wu K.Y, Molinski T.F& DeLong E.F . 1996A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl Acad. Sci. USA. 93, 6241–6246.doi:10.1073/pnas.93.13.6241. . Crossref, PubMed, ISI, Google Scholar- Ramette, A. N. & Tiedje, J. M. In press. Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb. Ecol. Google Scholar
Rosselló-Mora R Molecular identification, systematics, and population structure of prokaryotes. DNA–DNA reassociation methods applied to microbial taxonomy and their critical evaluation2006Berlin, Germany:Springer. Crossref, Google ScholarRossello-Mora R& Amann R . 2001The species concept for prokaryotes. FEMS Microbiol. Rev. 25, 39–67.doi:10.1111/j.1574-6976.2001.tb00571.x. . Crossref, PubMed, ISI, Google ScholarSchleper C, DeLong E.F, Preston C.M, Feldman R.A, Wu K.Y& Swanson R.V . 1998Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 180, 5003–5009. Crossref, PubMed, ISI, Google ScholarSchloter M, Lebuhn M, Heulin T& Hartmann A . 2000Ecology and evolution of bacterial microdiversity. FEMS Microbiol. Rev. 24, 647–660.doi:10.1111/j.1574-6976.2000.tb00564.x. . Crossref, PubMed, ISI, Google ScholarSiew N& Fischer D . 2003Analysis of singleton ORFans in fully sequenced microbial genomes. Proteins. 53, 241–251.doi:10.1002/prot.10423. . Crossref, PubMed, ISI, Google ScholarSpratt B.G, Hanage W.P& Feil E.J . 2001The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr. Opin. Microbiol. 4, 602–606.doi:10.1016/S1369-5274(00)00257-5. . Crossref, PubMed, ISI, Google ScholarStackebrandt E& Goebel B.M . 1994Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849. Crossref, Google ScholarStackebrandt E, 2002Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52, 1043–1047.doi:10.1099/ijs.0.02360-0. . PubMed, ISI, Google Scholar- Stahl, D. A. & Tiedje, J. M. 2002 Microbial ecology and genomics: a crossroads of opportunity. American Society for Microbiology, Colloquia reports. Available at: http://www.asm.org/Academy/index.asp?bid=2124. Google Scholar
Staley J.T Micobial diversity and bioprospecting. Speciation and bacterial phylospecies2004Washington, DC:ASM Press. Crossref, Google ScholarTempleton A.R Speciation and its consequences. The meaning of species and speciation: a genetic prespective1989Sunderland, MA:Sinauer Associates. Google ScholarTettelin H, 2005Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl Acad. Sci. USA. 102, 13 950–13 955.doi:10.1073/pnas.0506758102. . Crossref, ISI, Google ScholarTyson G.W, 2004Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 428, 37–43.doi:10.1038/nature02340. . Crossref, PubMed, ISI, Google ScholarVandamme P, Pot B, Gillis M, de Vos P, Kersters K& Swings J . 1996Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60, 407–438. Crossref, PubMed, Google ScholarVulic M, Dionisio F, Taddei F& Radman M . 1997Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl Acad. Sci. USA. 94, 9763–9767.doi:10.1073/pnas.94.18.9763. . Crossref, PubMed, ISI, Google ScholarWard D.M . 1998A natural species concept for prokaryotes. Curr. Opin. Microbiol. 1, 271–277.doi:10.1016/S1369-5274(98)80029-5. . Crossref, PubMed, ISI, Google ScholarWayne L.G, 1987Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464. Crossref, Google ScholarWhitaker R.J, Grogan D.W& Taylor J.W . 2003Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 301, 976–978.doi:10.1126/science.1086909. . Crossref, PubMed, ISI, Google ScholarWhitman W.B, Coleman D.C& Wiebe W.J . 1998Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA. 95, 6578–6583.doi:10.1073/pnas.95.12.6578. . Crossref, PubMed, ISI, Google Scholar