Philosophical Transactions of the Royal Society B: Biological Sciences

    The neuropsychological basis of attentional set-shifting, task-set switching and stop-signal inhibition is reviewed through comparative studies of humans and experimental animals. Using human functional neuroimaging, plus neuropsychological investigation of patients with frontal damage quantified by structural magnetic resonance imaging, and through parallels with effects of specific lesions of the prefrontal cortex (PFC) and striatum in rats and marmosets, it is possible to define both distinct and overlapping loci for tasks such as extra-dimensional shifting and reversal learning, stop-signal reaction time and task-set switching. Notably, most of the paradigms implicate a locus in the right PFC, specifically the right inferior frontal gyrus, possibly associated with processes of response inhibition. The neurochemical modulation of fronto-striatal circuitry in parallel with effects on task performance has been investigated using specific neuropharmacological agents in animals and by human psychopharmacological investigations, sometimes in conjunction with functional imaging. Evidence is provided for double dissociations of effects of manipulations of prefrontal cortical catecholamine and indoleamine (5-HT) systems that have considerable implications in the treatment of disorders such as Parkinson's disease, attention deficit/hyperactivity disorder and depression, as well as in theoretical notions of how ‘fronto-executive’ functions are subject to state-dependent influences, probably related to stress, arousal and motivation.

    References

    • Alexander G, DeLong M& Strick P.L. 1986Parallel organisation of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381.doi:10.1146/annurev.ne.09.030186.002041. . Crossref, PubMed, ISIGoogle Scholar
    • Allport A& Wyllie GTask-switching: positive and negative priming of task-set. Attention, space and action: studies in cognitive neuroscience, Humphreys G.W, Duncan J& Treisman A. 1999pp. 273–296. Eds. Oxford, UK:Oxford University Press. Google Scholar
    • Amat J, Baratta A, Paul E, Bland S.T, Watkins L.R& Maier S.F. 2005The ventral medial prefrontal cortex determines how behavioral control over stress impacts behavior and dorsal raphé nucleus activity. Nat. Neurosci. 8, 365–371.doi:10.1038/nn1399. . Crossref, PubMed, ISIGoogle Scholar
    • Anderson M.C, Ochsner K.N, Kuhl B, Cooper J, Robertson E, Gabrieli S.W, Glover G.H& Gabrieli J.D.E. 2004Neural systems underlying the suppression of unwanted memories. Science. 303, 232–235.doi:10.1126/science.1089504. . Crossref, PubMed, ISIGoogle Scholar
    • Arnsten A.F.T& Robbins T.WNeurochemical modulation of prefrontal cortical functions in humans and animals. The prefrontal cortex, Stuss D& Knight R. 2002pp. 51–84. Eds. New York, NY:Oxford University Press. Google Scholar
    • Aron, A. R., Behrens, T. E., Frank, M. J., Smith, S. & Poldrack, R. A. In press. Triangulating a cognitive control network using diffusion-weighted MRI and functional MRI. J. Neurosci. Google Scholar
    • Aron A.R& Poldrack R.A. 2006Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433.doi:10.1523/JNEUROSCI.4682-05.2006. . Crossref, PubMed, ISIGoogle Scholar
    • Aron A.R, Fletcher P.C, Bullmore E.T, Sahakian B.J& Robbins T.WStop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat. Neurosci. 6, 2003a115–116.doi:10.1038/nn1003. . Crossref, PubMed, ISIGoogle Scholar
    • Aron A, Watkins L, Sahakian B.J, Monsell S, Barker R.A& Robbins T.WTask-set switching deficits in early-stage Huntington's disease: implications for basal ganglia function. J. Cogn. Neurosci. 15, 2003b629–642.doi:10.1162/jocn.2003.15.5.629. . Crossref, PubMed, ISIGoogle Scholar
    • Aron A, Dowson J, Sahakian B.J& Robbins T.WMethylphenidate response inhibition in adults with attention-deficit/hyperactivity disorder. Biol. Psych. 54, 2003c1465–1468.doi:10.1016/S0006-3223(03)00609-7. . Crossref, PubMed, ISIGoogle Scholar
    • Aron A.R, Robbins T.W& Poldrack R.AInhibition and the right inferior frontal cortex. Trends Cogn. Sci. 8, 2004a170–177.doi:10.1016/j.tics.2004.02.010. . Crossref, PubMed, ISIGoogle Scholar
    • Aron A.R, Monsell S, Sahakian B.J& Robbins T.WA componential analysis of task-switching deficits associated with lesions of left and right frontal cortex. Brain. 127, 2004b1561–1573.doi:10.1093/brain/awh169. . Crossref, PubMed, ISIGoogle Scholar
    • Baddeley A.DWorking memory. 1986Oxford, UK:Clarendon Press. Google Scholar
    • Baddeley A& Della Salla SWorking memory and executive control. The prefrontal cortex: executive and cognitive functions, Roberts A.C, Robbins T.W& Weiskrantz L. 1998pp. 9–21. Eds. Oxford, UK:Oxford University Press. Google Scholar
    • Birrell J.M& Brown V.J. 2001Medial frontal cortex mediates perceptual attentional set shifting in the rat. J. Neurosci. 20, 4320–4324. Crossref, ISIGoogle Scholar
    • Bishop S, Duncan J& Lawrence A.D. 2004Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli. Nat. Neurosci. 7, 184–188.doi:10.1038/nn1173. . Crossref, PubMed, ISIGoogle Scholar
    • Bor D, Duncan J& Owen A.M. 2003Encoding strategies dissociate prefrontal activity from working memory demand. Neuron. 37, 361–367.doi:10.1016/S0896-6273(02)01171-6. . Crossref, PubMed, ISIGoogle Scholar
    • Brown V.J& Bowman E. 2002Rodent models of prefrontal cortical function. Trends Neurosci. 25, 340–343. Crossref, PubMed, ISIGoogle Scholar
    • Bunge S.A, Dudukovic N.M, Thomason M.E, Vaidya M& Gabrieli J.D.E. 2002Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron. 33, 301–311.doi:10.1016/S0896-6273(01)00583-9. . Crossref, PubMed, ISIGoogle Scholar
    • Castellanos F.X& Tannock R. 2002Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat. Rev. Neurosci. 3, 617–628. Crossref, PubMed, ISIGoogle Scholar
    • Chamberlain S.R, Muller U, Blackwell A.D, Clark L, Robbins T.W& Sahakian B.J. 2006Neurochemical modulation of response inhibition and probabilistic learning in humans. Science. 311, 861–863. Crossref, PubMed, ISIGoogle Scholar
    • Chambers C.D, Bellgrove M.A, Stokes M.G, Henderson T.R, Garavan H, Robertson I.H, Morris A.P& Mattingley J.B. 2006Executive ‘brake failure’ following deactivation of human frontal lobe. J. Cogn. Neurosci. 18, 444–455. PubMed, ISIGoogle Scholar
    • Chudasama Y& Robbins T.W. 2003Dissociable contributions of the orbitofrontal and infralimbic cortex in pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J. Neurosci. 23, 8771–8780. Crossref, PubMed, ISIGoogle Scholar
    • Clark L, Cools R, Evers L.E, van den Veen F, Jolles J, Sahakian B.J& Robbins T.W. 2004Neurochemical modulation of prefrontal cortex function. FENS Abstr. 2, A205.1. Google Scholar
    • Clark L, Roiser J.P, Cools R, Rubinsztein D.C, Sahakian B.J& Robbins T.W. 2005Stop signal response inhibition is not modulated by tryptophan depletion or the serotonin transporter polymorphism in healthy volunteers: implications for the 5-HT theory of impulsivity. Psychopharmacology. 182, 570–578.doi:10.1007/s00213-005-0104-6. . Crossref, PubMed, ISIGoogle Scholar
    • Clarke H.F, Dalley J.W, Crofts H.S, Robbins T.W& Roberts A.C. 2004Cognitive inflexibility following prefrontal serotonin depletion. Science. 304, 878–880.doi:10.1126/science.1094987. . Crossref, PubMed, ISIGoogle Scholar
    • Clarke H.F, Walker S.C, Crofts H.S, Dalley J.W, Robbins T.W& Roberts A.C. 2005Prefrontal serotonin depletion affects reversal learning but not attentional set shifting. J. Neurosci. 12, 532–538.doi:10.1523/JNEUROSCI.3690-04.2005. . Crossref, ISIGoogle Scholar
    • Clarke H.F, Walker S.C, Dalley J.W, Robbins T.W& Roberts A.C. 2007Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. Cereb. Cortex. 17, 18–27.doi:10.1093/cercor/bhj120. . Crossref, PubMed, ISIGoogle Scholar
    • Cohen J.D, Braver T.S& O'Reilly R.CA computational approach to prefrontal cortex, and schizophrenia: recent developments and current challenges. The prefrontal cortex: executive and cognitive functions, Roberts A.C, Robbins T.W& Weiskrantz L. 1998pp. 195–220. Eds. Oxford, UK:Oxford University Press. Google Scholar
    • Collins P, Roberts A.C, Dias R, Everitt B.J& Robbins T.W. 1998Perseveration and strategy in a novel spatial self-ordered sequencing task for non-human primates: effects of excitotoxic lesions and dopamine depletions of the prefrontal cortex. J. Cogn. Neurosci. 10, 332–354.doi:10.1162/089892998562771. . Crossref, PubMed, ISIGoogle Scholar
    • Cools R, Barker R, Sahakian B.J& Robbins T.W. 2001Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cereb. Cortex. 11, 1136–1143.doi:10.1093/cercor/11.12.1136. . Crossref, PubMed, ISIGoogle Scholar
    • Cools R, Clark L, Owen A.M& Robbins T.W. 2002Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J. Neurosci. 22, 4563–4567. Crossref, PubMed, ISIGoogle Scholar
    • Cools R, Barker R, Sahakian B.J& Robbins T.W. 2003l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson's disease. Neuropsychologia. 41, 1431–1441.doi:10.1016/S0028-3932(03)00117-9. . Crossref, PubMed, ISIGoogle Scholar
    • Cools R, Clark L& Robbins T.W. 2004Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance. J. Neurosci. 24, 1129–1135.doi:10.1523/JNEUROSCI.4312-03.2004. . Crossref, PubMed, ISIGoogle Scholar
    • Cools R, Lewis S.J, Clark L, Barker R.A& Robbins T.W. 2007l-Dopa disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. Neuropsychopharmacology. 32, 180–189.doi:10.1038/sj.npp.1301153. . Crossref, PubMed, ISIGoogle Scholar
    • Cools R, Ivry R.B& D'Esposito M.D. 2006The human striatum is necessary for responding to changes in stimulus relevance. J. Cog. Neurosci. 18, 1973–1983.doi:10.1162/jocn.2006.18.12.1973. . Crossref, PubMed, ISIGoogle Scholar
    • Corbetta M& Shulman G.L. 2002Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 215–229.doi:10.1038/nrn755. . Crossref, ISIGoogle Scholar
    • Crofts H.S, Dalley J.W, Collins P, Van Denderen J.C.M, Everitt B.J, Robbins T.W& Roberts A.C. 2001Differential effects of 6-OHDA lesions of the prefrontal cortex and caudate nucleus on the ability to acquire an attentional set. Cereb. Cortex. 11, 1015–1026.doi:10.1093/cercor/11.11.1015. . Crossref, PubMed, ISIGoogle Scholar
    • Damasio A.RThe somatic marker hypothesis and the possible functions of the prefrontal cortex. The prefrontal cortex: executive and cognitive functions, Roberts A.C, Robbins T.W& Weiskrantz L. 1998pp. 36–50. Eds. Oxford, UK:Oxford University Press. Google Scholar
    • D'Esposito M. 2007From cognitive to neural models of working memory. Phil. Trans. R. Soc. B. 362, 761–772.doi:10.1098/rstb.2007.2086. . Link, ISIGoogle Scholar
    • De Zubicaray G.I, Andrew C, Zelaya F.O, Williams S.C& Dumanoir C. 2000Motor response suppression and the prepotent tendency to respond; a parametric fMRI study. Neuropsychologia. 38, 1280–1291.doi:10.1016/S0028-3932(00)00033-6. . Crossref, PubMed, ISIGoogle Scholar
    • Derrfuss J, Brass M, Neumann J& von Cramon D.Y. 2005Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum. Brain Mapp. 25, 22–34.doi:10.1002/hbm.20127. . Crossref, PubMed, ISIGoogle Scholar
    • Dias R, Robbins T.W& Roberts A.C. 1996Dissociation in prefrontal cortex of affective and attentional shifts. Nature. 380, 69–72.doi:10.1038/380069a0. . Crossref, PubMed, ISIGoogle Scholar
    • Dias R, Robbins T.W& Roberts A.C. 1997Dissociable forms of inhibitory control within prefrontal cortex with an analogue of the Wisconsin card sort test: restriction to novel situations and independence from ’on-line’ processing. J. Neurosci. 17, 9285–9297. Crossref, PubMed, ISIGoogle Scholar
    • Divac I, Rosvold H.E& Szwarcbart M.K. 1967Behavioral effects of selective ablations of the caudate nucleus. J. Comp. Physiol. Psychol. 63, 184–190.doi:10.1037/h0024348. . Crossref, PubMed, ISIGoogle Scholar
    • Dolan R.J. 2007The human amygdala and orbital prefrontal cortex in behavioural regulation. Phil. Trans. R. Soc. B. 362, 787–799.doi:10.1098/rstb.2007.2088. . Link, ISIGoogle Scholar
    • Dove A, Pollman S, Schubert T, Wiggins C.J& von Cramon D.Y. 2000Prefrontal cortex activation in task switching: an event-related fMRI study. Brain Res. Cogn. Brain Res. 9, 103–109.doi:10.1016/S0926-6410(99)00029-4. . Crossref, PubMedGoogle Scholar
    • Duncan J& Owen A.M. 2000Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483.doi:10.1016/S0166-2236(00)01633-7. . Crossref, PubMed, ISIGoogle Scholar
    • Dunnett S.B& Iversen S.D. 1981Learning impairments following selective kainic acid-induced lesions within the neostriatum in rats. Behav. Brain Res. 2, 189–209.doi:10.1016/0166-4328(81)90055-3. . Crossref, PubMed, ISIGoogle Scholar
    • Eagle D.M& Robbins T.WInhibitory control in rats performing on the stop-signal reaction time task: effects of lesions of the medial striatum and d-amphetamine. Behav. Neurosci. 117, 2003a1302–1317.doi:10.1037/0735-7044.117.6.1302. . Crossref, PubMed, ISIGoogle Scholar
    • Eagle D.M& Robbins T.WLesions of the medial prefrontal cortex or nucleus accumbens core do not impair inhibitory control in rats performing a stop-signal reaction time task. Behav. Brain Res. 146, 2003b131–144.doi:10.1016/j.bbr.2003.09.022. . Crossref, PubMed, ISIGoogle Scholar
    • Eagle, D. M., Baunez, C., Hutcheson, D. M., Lehmann, O., Shah, A. P. & Robbins, T. W. In press. Stop-signal reaction time performance: role of prefrontal cortex and subthalamic nucleus. Cereb. Cortex. Google Scholar
    • Evers E.A, Cools R, Clark L, van der Veen F.M, Jolles J, Sahakian B.J& Robbins T.W. 2005Serotonergic modulation of prefrontal cortex during negative feedback in probabilistic reversal learning. Neuropsychopharmacology. 30, 1138–1147.doi:10.1038/sj.npp.1300663. . Crossref, PubMed, ISIGoogle Scholar
    • Fellows L.K& Farrah M.J. 2003Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain. 126, 1830–1837.doi:10.1093/brain/awg180. . Crossref, PubMed, ISIGoogle Scholar
    • Fuster J.MThe prefrontal cortex: anatomy, physiology and neuropsychology of the frontal lobe. 1989New York, NY:Raven. Google Scholar
    • Garavan H, Ross T.J& Stein E.A. 1999Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc. Natl Acad. Sci. USA. 96, 8301–8306.doi:10.1073/pnas.96.14.8301. . Crossref, PubMed, ISIGoogle Scholar
    • Garavan H, Ross T.J, Murphy K, Roche R.A& Stein E.A. 2002Dissociable executive functions in the dynamic control of behavior: inhibition, error detection and correction. Neuroimage. 17, 1820–1829.doi:10.1006/nimg.2002.1326. . Crossref, PubMed, ISIGoogle Scholar
    • Gehring W.J& Knight R.T. 2000Prefrontal–cingulate interactions in action monitoring. Nat. Neurosci. 3, 516–520.doi:10.1038/74899. . Crossref, PubMed, ISIGoogle Scholar
    • Gilbert S.J& Shallice T. 2002Task switching: a PDP model. Cogn. Psychol. 44, 297–337.doi:10.1006/cogp.2001.0770. . Crossref, PubMed, ISIGoogle Scholar
    • Goldman-Rakic P.SThe prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. The prefrontal cortex: executive and cognitive functions, Roberts A.C, Robbins T.W& Weiskrantz L. 1998pp. 87–102. Eds. Oxford, UK:Oxford University Press. Google Scholar
    • Haber S.N, Fudge J.L& McFarland N.R. 2000Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382. Crossref, PubMed, ISIGoogle Scholar
    • Hampshire A& Owen A.M. 2006Fractionating attentional control using event-related fMRI. Cereb. Cortex. 16, 1279–1289. ISIGoogle Scholar
    • Herath P, Klingberg T, Young J, Amutis K& Roland P. 2001Neural correlates of dual task performance can be dissociated from those of divided attention: an fMRI study. Cereb. Cortex. 11, 796–805.doi:10.1093/cercor/11.9.796. . Crossref, PubMed, ISIGoogle Scholar
    • Hollerman J.R, Tremblay L& Schultz W. 2000Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Prog. Brain Res. 126, 193–215. Crossref, PubMed, ISIGoogle Scholar
    • Hornak J, Bramham J, Rolls E.T, Morris R.G, O'Doherty J, Bullock P.R& Polkey C.E. 2004Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J. Cogn. Neurosci. 16, 463–478.doi:10.1162/089892904322926791. . Crossref, PubMed, ISIGoogle Scholar
    • Huettel S.A, Stowe C.J, Gordon E.M, Warner B.T& Platt M.L. 2006Neural signatures of economic preferences for risk and ambiguity. Neuron. 49, 765–775.doi:10.1016/j.neuron.2006.01.024. . Crossref, PubMed, ISIGoogle Scholar
    • Iversen S.D& Mishkin M. 1970Perseverative interference in monkeys following selective lesions of the inferior frontal convexity. Exp. Brain Res. 11, 376–386.doi:10.1007/BF00237911. . Crossref, PubMed, ISIGoogle Scholar
    • Keele S.W& Rafal RDeficits in task set in patients with left prefrontal cortex lesions. Control of cognitive processes: attention and performance XVIII, Monsell S& Driver J. 1999pp. 627–651. Eds. Cambridge, MA:MIT Press. Google Scholar
    • Koechlin E, Ody C& Kouneiher F. 2003The architecture of cognitive control in the human prefrontal cortex. Science. 302, 1181–1185.doi:10.1126/science.1088545. . Crossref, PubMed, ISIGoogle Scholar
    • Konishi S, Nakahama K, Uchida I, Kameyama M& Miyashita Y. 1999Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related fMRI. Brain. 122, 981–991.doi:10.1093/brain/122.5.981. . Crossref, PubMed, ISIGoogle Scholar
    • Konishi S, Nakajima K, Uchida I, Sekihara K& Miyashita Y. 1998No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur. J. Neurosci. 10, 1209–1213.doi:10.1046/j.1460-9568.1998.00167.x. . Crossref, PubMed, ISIGoogle Scholar
    • Lange K, Robbins T.W, Marsden C.D, James M, Owen A& Paul G.M. 1992l-Dopa withdrawal selectively impairs performance in tests of frontal lobe function in Parkinson's disease. Psychopharmacology. 107, 394–404.doi:10.1007/BF02245167. . Crossref, PubMed, ISIGoogle Scholar
    • Lange K.W, Sahakian B.J, Quinn N.P, Marsden C.D& Robbins T.W. 1995Comparison of executive and visuospatial function in Huntington's disease and dementia of the Alzheimer-type matched for degree of dementia. J. Neurol. Neurosurg. Psych. 58, 598–606. Crossref, PubMed, ISIGoogle Scholar
    • Lapiz M.D.S& Morilak D.A. 2005Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience. 137, 1039–1049.doi:10.1016/j.neuroscience.2005.09.031. . Crossref, PubMed, ISIGoogle Scholar
    • Lewis S.J.G, Slabosz A, Robbins T.W, Barker R.A& Owen A.M. 2005Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson's disease. Neuropsychologia. 43, 823–832.doi:10.1016/j.neuropsychologia.2004.10.001. . Crossref, PubMed, ISIGoogle Scholar
    • Liston C, Miller M.M, Goldwater D.S, Radley J.J, Rocher A.B, Hof P.R, Morrison J.H& McEwen B.S. 2006Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J. Neurosci. 26, 7870–7874.doi:10.1523/JNEUROSCI.1184-06.2006. . Crossref, PubMed, ISIGoogle Scholar
    • Logan G.D& Cowan W.B. 1984On the ability to inhibit thought and action: a theory of an act of control. Psychol. Rev. 91, 295–327.doi:10.1037/0033-295X.91.3.295. . Crossref, ISIGoogle Scholar
    • MacDonald A.W, Cohen J.D, Stenger V.A& Carter C.S. 2000Dissociating the role of the dorsolateral prefrontal cortex and anterior cingulate cortex in cognitive control. Science. 288, 1235–1238.doi:10.1126/science.288.5472.1835. . Crossref, ISIGoogle Scholar
    • Mattay V.S, Goldberg T.E, Fera F, Hariri A.R, Tessitore R, Egan M.F, Kolachana B, Callicot J.H& Weinberger D.R. 2003Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc. Natl Acad. Sci. USA. 100, 6186–6191.doi:10.1073/pnas.0931309100. . Crossref, PubMed, ISIGoogle Scholar
    • McClure S, Laibson D.I, Loewenstein G& Cohen J.D. 2004Separate neural systems value immediate and delayed monetary rewards. Science. 306, 503–507.doi:10.1126/science.1100907. . Crossref, PubMed, ISIGoogle Scholar
    • Mecklinger A.D, von Cramon D.Y, Springer A& Matthes-von Cramon G. 1999Executive control functions in task-switching: evidence from brain-injured patients. J. Clin. Exp. Neuropsychol. 21, 606–619. Crossref, PubMed, ISIGoogle Scholar
    • Mehta M.A, Sahakian B.J, McKenna P.J& Robbins T.W. 1999Systemic sulpiride in young adult volunteers simulates the profile of cognitive deficits in Parkinson's disease. Psychopharmacology. 146, 162–174.doi:10.1007/s002130051102. . Crossref, PubMed, ISIGoogle Scholar
    • Mehta M.A, Manes F.F, Magnolfi G, Sahakian B.J& Robbins T.W. 2004Impaired set-shifting and dissociable effects on tests of spatial working memory following the dopamine D2 receptor antagonist sulpiride in healthy volunteers. Psychopharmacology. 176, 331–342.doi:10.1007/s00213-004-1899-2. . Crossref, PubMed, ISIGoogle Scholar
    • Menon V, Adleman N.E, White C.D, Glover G.H& Reiss A.L. 2001Error-related brain activation during a Go/No Go response inhibition task. Hum. Brain Mapp. 12, 131–143.doi:10.1002/1097-0193(200103)12:3<131::AID-HBM1010>3.0.CO;2-C. . Crossref, PubMed, ISIGoogle Scholar
    • Middleton H.C, Sharma A, Agouzoul D, Sahakian B.J& Robbins T.W. 1999Idazoxan potentiates rather than antagonizes some of the cognitive effects of clonidine. Psychopharmacology. 145, 401–411.doi:10.1007/s002130051074. . Crossref, PubMed, ISIGoogle Scholar
    • Miller E.K& Cohen J.D. 2001An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202. Crossref, PubMed, ISIGoogle Scholar
    • Moghaddam B. 2004Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology. 174, 39–44.doi:10.1007/s00213-004-1792-z. . Crossref, PubMed, ISIGoogle Scholar
    • Monchi O, Petrides M.P, Petre V, Worsley K& Dagher A. 2001Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the test identified by event-related functional magnetic resonance imaging. J. Neurosci. 21, 7733–7741. Crossref, PubMed, ISIGoogle Scholar
    • Monsell S. 2003Task switching. Trends Cogn. Sci. 7, 134–140. Crossref, PubMed, ISIGoogle Scholar
    • Murphy F.C, Michael A, Robbins T.W& Sahakian B.J. 2002Neuropsychological impairment in patients with major depressive disorder: the effects of feedback on task performance. Psychol. Med. 33, 455–467.doi:10.1017/S0033291702007018. . Crossref, ISIGoogle Scholar
    • Nagahama Y, Okada T, Katsumi Y, Hayashi T, Yamauchi H, Oyanagi C, Konishi S, Fukuyama H& Shibasaki H. 2000Dissociable mechanisms of attentional control within the human prefrontal cortex. Cereb. Cortex. 11, 85–92.doi:10.1093/cercor/11.1.85. . Crossref, ISIGoogle Scholar
    • Nakahara K, Hayashi T, Konishi S& Miyashita Y. 2002Functional MRI of monkeys performing a cognitive set-shifting task. Science. 295, 1532–1536.doi:10.1126/science.1067653. . Crossref, PubMed, ISIGoogle Scholar
    • O'Doherty J, Kringelbach M.L, Rolls E.T, Hornak J& Andrews C. 2001Abstract reward and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4, 95–102.doi:10.1038/82959. . Crossref, PubMed, ISIGoogle Scholar
    • O'Doherty J, Critchley H, Deichmann R& Dolan R.J. 2003Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortex. J. Neurosci. 23, 7391–7939. Crossref, ISIGoogle Scholar
    • Owen A, Downes J.J, Sahakian B.J, Polkey C.E& Robbins T.W. 1990Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia. 28, 1021–1034.doi:10.1016/0028-3932(90)90137-D. . Crossref, PubMed, ISIGoogle Scholar
    • Owen A.M, Roberts A.C, Polkey C.E, Sahakian B.J& Robbins T.W. 1991Extra-dimensional versus intradimensional set shifting performance following frontal lobe excision, temporal lobe excision or amygdalo-hippocampectomy in man. Neuropsychologia. 29, 993–1006.doi:10.1016/0028-3932(91)90063-E. . Crossref, PubMed, ISIGoogle Scholar
    • Owen A.M, Roberts A.C, Hodges J.R, Summers B.A, Polkey C.E& Robbins T.W. 1993Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. Brain. 116, 1159–1179.doi:10.1093/brain/116.5.1159. . Crossref, PubMed, ISIGoogle Scholar
    • Owen A.M, Morris R.G, Sahakian B.J, Polkey C.E& Robbins T.W. 1996Double dissociations of memory and executive functions in working memory tasks following frontal lobe excision, temporal lobe excisions or amygdala-hippocampectomy in man. Brain. 119, 1597–1615.doi:10.1093/brain/119.5.1597. . Crossref, PubMed, ISIGoogle Scholar
    • Pandya D.N& Barnes C.LArchitecture and connections of the frontal lobe. The frontal lobes revisited& Perecman E. 1987pp. 41–68. Eds. Hillsdale, NJ:Lawrence Erlbaum. Google Scholar
    • Park S.B, Coull J.T, McShane R.H, Young A.H, Sahakian B.J, Robbins T.W& Cowen P.J. 1994Tryptophan depletion in normal volunteers produces selective impairments in learning and memory. Neuropharmacology. 33, 575–588.doi:10.1016/0028-3908(94)90089-2. . Crossref, PubMed, ISIGoogle Scholar
    • Petrides MSpecialized systems for the processing of mnemonic information within the primate frontal cortex. The prefrontal cortex: executive and cognitive functions, Roberts A.C, Robbins T.W& Weiskrantz L. 1998pp. 103–114. Eds. Oxford, UK:Oxford University Press. Google Scholar
    • Preuss T.M. 1995Do rats have a prefrontal cortex? The Rose–Woolsey–Akert Program reconsidered. J. Cogn. Neurosci. 7, 1–24. Crossref, PubMed, ISIGoogle Scholar
    • Rahman S, Sahakian B.J, Hodges J.R, Rogers R.D& Robbins T.W. 1999Specific cognitive deficits in mild frontal variant frontotemporal dementia. Brain. 122, 1469–1493.doi:10.1093/brain/122.8.1469. . Crossref, PubMed, ISIGoogle Scholar
    • Robbins T.WDissociating executive functions of the prefrontal cortex. The prefrontal cortex: executive and cognitive functions, Roberts A.C, Robbins T.W& Weiskrantz L. 1998pp. 117–130. Eds. Oxford, UK:Oxford University Press. Google Scholar
    • Robbins T.W. 2000Chemical neuromodulation of frontal-executive function in humans and other animals. Exp. Brain Res. 133, 130–138.doi:10.1007/s002210000407. . Crossref, PubMed, ISIGoogle Scholar
    • Robbins T.W. 2005Controlling stress: how the brain protects itself from depression. Nat. Neurosci. 3, 261–262.doi:10.1038/nn0305-261. . Crossref, ISIGoogle Scholar
    • Robbins T.W& Everitt B.JFunctions of dopamine in the dorsal and ventral striatum. Seminars in the neurosciences& Robbins T.W. 1992pp. 119–127. Eds. London, UK:Saunders. Google Scholar
    • Robbins T.W& Murphy E.R. 2006Behavioural pharmacology: 40+ years of progress, with a focus on glutamate receptors and cognition. Trends Pharmacol. Sci. 27, 141–148.doi:10.1016/j.tips.2006.01.009. . Crossref, PubMed, ISIGoogle Scholar
    • Robbins, T. W. & Roberts, A. C. In press. Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cereb. Cortex. Google Scholar
    • Roberts A, Robbins T.W& Everitt B.J. 1988Extra- and Intra-dimensional shifts in man and marmoset. Q. J. Exp. Psychol. B. 40, 321–342. PubMedGoogle Scholar
    • Roberts A.C, De Salvia M.A, Wilkinson L.S, Collins P, Muir J.L, Everitt B.J& Robbins T.W. 19946-hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analogue of the Wisconsin card sorting test: possible interactions with subcortical dopamine. J. Neurosci. 14, 2531–2544. Crossref, PubMed, ISIGoogle Scholar
    • Roberts A.C, Robbins T.W& Weiskrantz LThe prefrontal cortex: executive and cognitive functions. 1998aOxford, UK:Oxford University Press. Google Scholar
    • Rogers R.D, Sahakian B.J, Hodges J.R, Polkey C.E, Kennard C& Robbins T.WDissociating executive mechanisms of task control following frontal lobe damage and Parkinson's disease. Brain. 121, 1998b815–842.doi:10.1093/brain/121.5.815. . Crossref, PubMed, ISIGoogle Scholar
    • Rogers R.D, Owen A.M, Middleton H.C, Williams E.J, Pickard J.D, Sahakian B.J& Robbins T.WChoosing between small, likely rewards and large unlikely rewards activates inferior and orbital prefrontal cortex. J. Neurosci. 20, 1999a9029–9038. Crossref, ISIGoogle Scholar
    • Rogers R.D, et al.Tryptophan depletion impairs stimulus-reward learning while methylphenidate disrupts attentional control in healthy young adults: implications for the monoaminergic basis of impulsive behaviour. Psychopharmacology. 146, 1999b482–491.doi:10.1007/PL00005494. . Crossref, PubMed, ISIGoogle Scholar
    • Rogers R.D, Andrews T.C, Grasby P.M, Brooks D& Robbins T.W. 2000Contrasting cortical and sub-cortical PET activations produced by reversal learning and attentional-set shifting in humans. J. Cogn. Neurosci. 12, 142–162.doi:10.1162/089892900561931. . Crossref, PubMed, ISIGoogle Scholar
    • Rowe J.B, Toni I, Josephs O, Frackowiak R.S.J& Passingham R.E. 2000The prefrontal cortex: response selection or maintenance within working memory?. Science. 288, 1656–1660.doi:10.1126/science.288.5471.1656. . Crossref, PubMed, ISIGoogle Scholar
    • Rubia K, Smith A.B, Brammer M.J& Taylor E. 2003Right inferior cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage. 20, 351–358.doi:10.1016/S1053-8119(03)00275-1. . Crossref, PubMed, ISIGoogle Scholar
    • Schall J.D, Stuphorn V& Brown J.W. 2002Monitoring and control of action by the frontal lobes. Neuron. 36, 309–322.doi:10.1016/S0896-6273(02)00964-9. . Crossref, PubMed, ISIGoogle Scholar
    • Schoenbaum G, Setlow B& Ramus S. 2002Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odour discriminations. Neuroreport. 13, 885–890.doi:10.1097/00001756-200205070-00030. . Crossref, PubMed, ISIGoogle Scholar
    • Schultz W& Dickinson A. 2000Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500.doi:10.1146/annurev.neuro.23.1.473. . Crossref, PubMed, ISIGoogle Scholar
    • Shallice T. 1982Specific impairments of planning. Phil. Trans. R. Soc. B. 298, 199–209.doi:10.1098/rstb.1982.0082. . Link, ISIGoogle Scholar
    • Shallice T& Burgess PThe domain of supervisory processes and the temporal organisation of behaviour. The prefrontal cortex: executive and cognitive functions, Roberts A.C, Robbins T.W& Weiskrantz L. 1998pp. 22–35. Eds. Oxford, UK:Oxford University Press. Google Scholar
    • Slamecka N.J. 1968A methodological analysis of shift paradigms in human discrimination learning. Psychol. Bull. 69, 423–438.doi:10.1037/h0025762. . Crossref, PubMed, ISIGoogle Scholar
    • Smith E.E& Jonides JWorking memory in humans: neuropsychological evidence. The cognitive neurosciences& Gazzaniga M. 1995pp. 109–120. Eds. Cambridge, MA:MIT Press. Google Scholar
    • Solanto M, Abikoff H, Sonuga-Barke E, Schachar R, Logan G.D, Wigal T, Hectman L, Hinshaw S& Turkel E. 2001The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: a supplement to the NIMH multi-modal treatment study of AD/HD. J. Abnorm. Child Psychol. 29, 215–228.doi:10.1023/A:1010329714819. . Crossref, PubMed, ISIGoogle Scholar
    • Stuss D.T& Alexander M.P. 2007Is there a dysexecutive syndrome?. Phil. Trans. R. Soc. B. 362, 901–915.doi:10.1098/rstb.2007.2096. . Link, ISIGoogle Scholar
    • Stuss D.T, Toth J.P, Fianchi D, Alexander M.P, Tipper S& Craik F. 1999Dissociation of attentional processes in patients with focal frontal and posterior lesions. Neuropsychologia. 37, 1005–1027.doi:10.1016/S0028-3932(98)00158-4. . Crossref, PubMed, ISIGoogle Scholar
    • Sutherland N.S& Mackintosh N.JMechanisms of animal discrimination learning. 1971New York, NY:Academic Press. Google Scholar
    • Swainson R, Cunnington R, Jackson G.M, Rorden C, Peters A, Morris P.G& Jackson S.R. 2000Cognitive control mechanisms revealed by ERP and fMRI: evidence from repeated task-set shifting. J. Cogn. Neurosci. 15, 785–799.doi:10.1162/089892903322370717. . Crossref, ISIGoogle Scholar
    • Talbot P.S, Watson D.R, Barrett S.L& Cooper S.J. 2006Rapid tryptophan depletion improves decision-making cognition without affecting reversal learning or set-shifting. Neuropsychopharmacology. 31, 1519–1525.doi:10.1038/sj.npp.1300980. . Crossref, PubMed, ISIGoogle Scholar
    • Tunbridge E.M, Bannerman D.M, Sharp T& Harrison P.J. 2004Catechol-o-methyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat. J. Neurosci. 24, 5331–5335.doi:10.1523/JNEUROSCI.1124-04.2004. . Crossref, PubMed, ISIGoogle Scholar