Carbon sequestration
Abstract
Developing technologies to reduce the rate of increase of atmospheric concentration of carbon dioxide (CO2) from annual emissions of 8.6 Pg C yr–1 from energy, process industry, land-use conversion and soil cultivation is an important issue of the twenty-first century. Of the three options of reducing the global energy use, developing low or no-carbon fuel and sequestering emissions, this manuscript describes processes for carbon (CO2) sequestration and discusses abiotic and biotic technologies. Carbon sequestration implies transfer of atmospheric CO2 into other long-lived global pools including oceanic, pedologic, biotic and geological strata to reduce the net rate of increase in atmospheric CO2. Engineering techniques of CO2 injection in deep ocean, geological strata, old coal mines and oil wells, and saline aquifers along with mineral carbonation of CO2 constitute abiotic techniques. These techniques have a large potential of thousands of Pg, are expensive, have leakage risks and may be available for routine use by 2025 and beyond. In comparison, biotic techniques are natural and cost-effective processes, have numerous ancillary benefits, are immediately applicable but have finite sink capacity. Biotic and abiotic C sequestration options have specific nitches, are complementary, and have potential to mitigate the climate change risks.
References
Anderson S.H, Gantzer C.J& Brown J.R . 1990 Soil physical properties after 100 years of continuous cultivation. J. Soil Water Conserv. 45, 117–121. Web of Science, Google ScholarArends T& Casth P . 1994 The comparative effect of equivalent amounts of NPK applied in farmyard manure or in fertilizers, as a function of soil properties. Agrok mas Talajtan. 43, 398–407. Google ScholarArmentano T.V& Menges E.S . 1986 Patterns of change in the carbon balance of organic wetlands of the temperate zone. J. Ecology. 74, 755–774.doi:10.2307/2260396. . Crossref, Web of Science, Google ScholarArrhenius S . 1896 On the influence of carbonic acid in the air upon the temperature of the ground. Phil. Mag. J. Sci. (London, Edinburgh, Dublin). 41, 237. Crossref, Google ScholarAuerbach D.I, Caulfield J.A, Adams E.E& Herzog H.J . 1997 Impacts of ocean CO2 disposal on marine life: a toxicological assessment integrating constant-concentration laboratory assay data with variable concentration field exposure. Environ. Model. Assess. 2, 333–343.doi:10.1023/A:1019029931755. . Crossref, Google ScholarBatjes N.H . 1996 Total C and N in soils of the world. Eur. J. Soil Sci. 47, 151–163.doi:10.1111/j.1365-2389.1996.tb01386.x. . Crossref, Web of Science, Google ScholarBattle M, Bender M.L, Tans P.P, White J.W.C, Ellis J.T, Conway T& Francey R . 2000 Global carbon sinks and their variability inferred from O2 and δ13C. Science. 287, 2467–2470.doi:10.1126/science.287.5462.2467. . Crossref, PubMed, Web of Science, Google ScholarBowman R.A& Halvorson A.D . 1998 Soil chemical changes after nine years of differential N fertilization in no-till dryland wheat–corn–fallow rotation. Soil Sci. 163, 241–247.doi:10.1097/00010694-199803000-00009. . Crossref, Web of Science, Google ScholarBoyd P.W, 2004 The decline and fate of an iron-induced sub-arctic phytoplankton bloom. Nature. 428, 549–553.doi:10.1038/nature02437. . Crossref, PubMed, Web of Science, Google ScholarBrahic C . 2006 Price crash rattles Europe's CO2 reduction scheme. Science. 312, 1123 doi:10.1126/science.312.5777.1123. . Crossref, PubMed, Web of Science, Google Scholar- Breslau, K. It can pay to be green: cleaner air means profits at the climate exchange. Newsweek, 22 May 2006, p. 45. Google Scholar
Bunker D.E, DeClerck F, Bradford J.C, Colwell R.K, Perfecto I, Phillips O.L, Sankaran M& Naeem S . 2005 Species loss and aboveground carbon storage in a tropical forest. Science. 310, 1029–1031.doi:10.1126/science.1117682. . Crossref, PubMed, Web of Science, Google ScholarBuyanoski H.A, Brown J.R& Wagner G.H Sanborn field; effects of 100 years of cropping on soil parameters influencing crop productivity. Soil organic matter in temperate ecosystems in North America, Paul E.A, Paustian E, Elliot T& Cole C.V . 1997pp. 205–225. Eds. Boca Raton, FL:CRC Press. Google ScholarBuyanoski H.A& Wagner G.H . 1998 Carbon cycling in cultivated land and its global significance. Global Change Biol. 4, 131–141.doi:10.1046/j.1365-2486.1998.00130.x. . Crossref, Web of Science, Google ScholarCampbell C.A, Biederbeck V.O, Zentner R.P& Lafond G.P . 1991 Effect of crop rotations and cultural practices on soil organic mater, microbial biomass and respiration in a thin, black Chernozem. Can. J. Soil Sci. 71, 363–376. Crossref, Web of Science, Google ScholarCaulfield J.A, Adams E.E, Auerbach D.I& Herzog H.J . 1997 Impacts of ocean CO2 disposal on marine life: probalistic plume exposure model with a time-varying dose-responsive analysis. Environ. Model. Assess. 2, 345–353.doi:10.1023/A:1019081915826. . Crossref, Google ScholarChisholm S.W, Falkowski P.G& Cullen J.J . 2001 Dis-crediting ocean fertilization. Science. 294, 309–310.doi:10.1126/science.1065349. . Crossref, PubMed, Web of Science, Google ScholarChristensen B.T The Askov long-term experiments on animal manure and mineral fertilizers. Evaluation of soil organic matter: models using existing datasets., Powlson D.S, Smith P& Smith J.U NATO, ASI 138 1996pp. 301–312. Eds. Heidelberg, Germany:Springer. Google ScholarCramer W.A, 2001 Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol. 7, 357–373.doi:10.1046/j.1365-2486.2001.00383.x. . Crossref, Web of Science, Google ScholarDelgado J.A, Sparks R.T, Follet R.F, Sharkoff J.L& Riggenbach R.R Use of winter cover crops to conserve soil and water quality in the San Luis Valley of south central Colorado. Erosion impact on soil quality& Lal R . 1998pp. 125–142. Eds. Boca Raton, FL:CRC. Google Scholar- Dick, W. A., Van Doren Jr, D. M., Triplett Jr, G. B. & Henry, J. E. 1986 Influence of long-term tillage and rotation combinations on crop yields and selected soil parameters: results obtained for a Mollic Ochraqualf soil. OARDC Res. Bull. 1180, Wooster, OH. Google Scholar
Drinkwater L.E, Wagoner P& Sarrantonio M . 1998 Legume based cropping systems have reduced carbon and nitrogen losses. Nature. 396, 262–264.doi:10.1038/24376. . Crossref, Web of Science, Google ScholarDumanski J, Desjardins R.L, Tarnocai C.G, Monreal D, Gregorich E.G, Kirkwood V& Campbell C.A . 1998 Possibilities for future carbon sequestration in Canadian agriculture in relation to land use changes. Clim. Change. 40, 81–103.doi:10.1023/A:1005390815340. . Crossref, Web of Science, Google ScholarFalkowski P.G . 1997 Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature. 387, 272–275.doi:10.1038/387272a0. . Crossref, Web of Science, Google ScholarFalkowski P, 2000 The global carbon cycle: a test of our knowledge of earth as a system. Science. 290, 291–296.doi:10.1126/science.290.5490.291. . Crossref, PubMed, Web of Science, Google ScholarFan L.S& Park A . 2004 CO2 mineral sequestration in a high pressure, high temperature, 3-phase fluidizied bed reactor. Can. J. Chem. Eng. 81, 855–890. Google ScholarFan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T& Tan P . 1998 A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science. 282, 442–446.doi:10.1126/science.282.5388.442. . Crossref, PubMed, Web of Science, Google ScholarFang J, Chen A, Peng C, Zhao S& Ci L . 2001 Changes in forest biomass carbon storage in China between 1949 and 1998. Science. 292, 2320–2316.doi:10.1126/science.1058629. . Crossref, PubMed, Web of Science, Google ScholarFollett R.F . 2001 Soil management concepts and carbon sequestration in cropland soils. Soil Till. Res. 61, 77–92.doi:10.1016/S0167-1987(01)00180-5. . Crossref, Web of Science, Google ScholarFowles M . 2007 Black carbon sequestration as an alternative to bioenergy. Biomass Bioenergy. 31, 426–432. Crossref, Web of Science, Google ScholarFreund P& Ormerod W.G . 1997 Progress towards storage of carbon dioxide. Energy Convers. Manage. 38, 198–205.doi:10.1016/S0196-8904(96)00269-5. . Crossref, Web of Science, Google ScholarFullen M.A& Auerswald K . 1998 Effect of grass ley set aside on runoff, erosion and organic mater levels in sandy soil in east Shropshire, U.K. Soil Till. Res. 46, 41–49. Crossref, Web of Science, Google ScholarFung I . 2000 Variable carbon sinks. Science. 290, 1313 doi:10.1126/science.290.5495.1313. . Crossref, PubMed, Web of Science, Google ScholarGale J Why do we need to consider geological storage of CO2?. In Geological storage of carbon dioxide, Baines S.J& Worden R.H . 2004pp. 7–15. Eds. London, UK:The Geological Society. Google ScholarGarnett M.H, Ineson P, Stevenson A.C& Howard D.C . 2001 Terrestrial organic carbon in a British moorland. Global Change Biol. 7, 375–388.doi:10.1046/j.1365-2486.2001.00382.x. . Crossref, Web of Science, Google Scholar- Gerdemann, S. J., Dahlin, D. C., O'Connor, W. K. & Penner, L. R. 2003 Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate miners. In Second Annual Conference on Carbon Sequestration, NETL Proceedings 5–9 May, 2003, Alexandria, VA. Pittsburgh, PA: NETL. See www.carbonsq.com/pdf/psoters/BCI2. Google Scholar
- Gerdemann, S. J., Dahlinm, D. C., O'Connor, W. K., Penner, L. R. & Rush, G. E. 2004 Factors affecting ex-situ aqueous mineral carbonation using Ca and Mg silicate minerals. In Proc. Clean Water Conf., 30 April 2004, Portland Oregon. Portland OR: Environmental Law Education Center. Google Scholar
Gile L.H . 1993 Carbon storage in sand soils of the Leasburg Surface, southern New Mexico. Soil Sci. 156, 101–110.doi:10.1097/00010694-199308000-00006. . Crossref, Web of Science, Google Scholar- Goff, F., Guthrie, G., Counce, D., Kluk, E., Bergfeld, D. & Snow, M. 1997 Preliminary investigations on the CO2 sequestering potential of ultrafamic rocks. LA-13328-MS, Los Alamos National Laboratory, Los Alamos, NM, USA. Google Scholar
- Goff, F., Guthrie, G., Lipin, B., Fite, M., Chipera, S., Counce, D., Kluk, E. & Ziock, H. 2000 Evaluation of ultrafamic deposits in the eastern U.S. and Puerto Rico as sources of magnesium for CO2 sequestration. LA-13694-MS, Los Alamos National Laboratory, Los Alamos, NM, USA. Google Scholar
Goldemberg J . 2007 Ethanol for a sustainable energy future. Science. 315, 808–810.doi:10.1126/science.1137013. . Crossref, PubMed, Web of Science, Google ScholarGorham E . 1991 Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecol. Appl. 1, 182–195.doi:10.2307/1941811. . Crossref, PubMed, Web of Science, Google ScholarGrace P& Oades J.M Long-term field trials in Australia. Long-term experiments in agricultural and ecological sciences, Leigh R.A& Johnston A.E . 1994pp. 53–81. Eds. Wallingford, UK:CAB International. Google ScholarGraham R.L, Nelson R, Sheehan J, Perlack R.D& Wright L.L . 2007 Current and potential U.S. corn stover supplies. Agron. J. 99, 1–11. Crossref, Web of Science, Google ScholarGrainger A Modeling the anthropogenic degradation of drylands and the potential to mitigate global climate change. Global climate change by combating land degradation, Squires V.R, Glenn E.P& Ayoub T.A . 1995pp. 193–199. Eds. Nairobi, Kenya:UNEP. Google ScholarGreene C.H& Pershing A.J . 2007 Climate drives sea change. Science. 315, 1084–1085.doi:10.1126/science.1136495. . Crossref, PubMed, Web of Science, Google ScholarGregorich E.G, Ellert B.H, Dury C.F& Linang B.C . 1996 Fertilization effects on soil organic matter turnover and crop residue carbon storage. Soil Sci. Soc. Am. J. 61, 1159–1175. Web of Science, Google ScholarGressel N . 2007 From greener production to carbon trading: sustainable energy careers. Science. 315, 868–869.doi:10.1126/science.315.5813.868. . Crossref, PubMed, Google ScholarHalvorson A.D, Reule C.A& Follett R.F . 1999 Nitrogen fertilization effects on soil carbon and nitrogen in a dryland cropping system. Soil Sci. Soc. Am. J. 63, 912–917. Crossref, Web of Science, Google ScholarHalvorson A.D, Wienhold B.J& Black A.L . 2002 Tillage, nitrogen and cropping system effects on soil carbon sequestration. Soil Sci. Soc. Am. J. 66, 906–912. Crossref, Web of Science, Google Scholar- Herzog, H., Drake, E. & Adams, E. E. 1997 CO2 capture, reuse and storage technologies for mitigating climate change. A white paper prepared for USDOE by the MIT Energy Lab. See web.mit.edu/energylab/www/. Google Scholar
Herzog H, Eliasson B& Kaarstad O . 2002 Capturing greenhouse gases. Sci. Am. 282, 72–80. Crossref, Web of Science, Google ScholarHillman G.R Effects of engineered drainage on water table and peat subsidence in an Alberta treed fern. Northern forested wetlands: ecology and management, Trettin C.C, Jurgensen M.F, Grigal D.F, Gale M.R& Jeglum J.K . 1997pp. 253–272. Eds. Boca Raton, FL:CRC Press. Google ScholarHimes F.L Nitrogen, sulfur and phosphorus and the sequestering of carbon. Soil processes and the carbon cycle, Lal R, Kimble J.M, Follett R.F& Stewart B.A . 1998pp. 315–319. Eds. Boca Raton, FL:CRC Press. Google ScholarHimmel M.E, Ding S.-Y, Johnson D.K, Adney W.S, Nimlos M.R, Brady J.W& Foust T.D . 2007 Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 315, 804–807.doi:10.1126/science.1137016. . Crossref, PubMed, Web of Science, Google Scholar- IPCC Land use, land use change and forestry. Inter-government panel on climate change 1999 Cambridge, UK:Cambridge University Press. Google Scholar
- IPCC Climate change 2001: the scientific basis. Inter-government panel on climate change 2001 Cambridge, UK:Cambridge University Press. Google Scholar
- IPCC Climate change 2007. Climate change impacts, adaptation and vulnerability. Working Group II 2007 Geneva, Switzerland:IPCC. Google Scholar
Jacinthe P.A, Lal R& Kimble J.M . 2002 Effects of wheat residue fertilization on accumulation and biochemical attributes of organic carbon in central Ohio Luvisol. Soil Sci. 167, 750–758.doi:10.1097/00010694-200211000-00005. . Crossref, Web of Science, Google ScholarJackson R.B, 2005 Trading water for carbon with biological carbon sequestration. Science. 310, 1944–1947.doi:10.1126/science.1119282. . Crossref, PubMed, Web of Science, Google ScholarJanzen H.H, Campell C.A, Izaurralde R.C, Ellert B.H, Juma N, McGill W& Zentner R.P . 1998 Management effects on soil C storage on the Canadian prairies. Soil Till. Res. 47, 181–195.doi:10.1016/S0167-1987(98)00105-6. . Crossref, Web of Science, Google ScholarJenkinson D.S . 1990 The turnover of organic carbon and nitrogen in soil. Phil. Trans. R. Soc. B. 329, 361–368.doi:10.1098/rstb.1990.0177. . Link, Web of Science, Google ScholarJohnson E& Heinen R . 2004 Carbon trading: time for industry involvement. Environ. Int. 30, 279–288.doi:10.1016/j.envint.2003.09.001. . Crossref, PubMed, Web of Science, Google ScholarJohnson K.S, Karl D.M, Chisholm S.W, Falowski P.G& Cullen J.J . 2002 Is ocean fertilization credible and creditable?. Science. 296, 467–468.doi:10.1126/science.296.5567.467b. . Crossref, PubMed, Web of Science, Google Scholar- Johnston, A. E. 1973 The effects of ley and arable cropping systems on the amount of organic matter in the Rothamstead and Woburn ley-arable experiments. Rothamstead Report for 1972, Part 2, pp. 131–159. Google Scholar
Kerr R.A . 2001 Bush backs spending for a “global problem”. Science. 292, 1978 doi:10.1126/science.292.5524.1978. . Crossref, PubMed, Web of Science, Google ScholarKerr R.A . 2007 Scientists tell policy makers we're all warming the world. Science. 315, 754–757.doi:10.1126/science.315.5813.754. . Crossref, PubMed, Web of Science, Google ScholarKintisch E Report backs more projects to sequester CO2 from coal. Science. 315, 2007a 1481 doi:10.1126/science.315.5818.1481a. . Crossref, PubMed, Web of Science, Google ScholarKintisch E New congress may be warming up to plans for capping emissions. Science. 315, 2007b 444 doi:10.1126/science.315.5811.444. . Crossref, PubMed, Web of Science, Google ScholarKlara S.M, Srivastava R.D& McElvried H.G . 2003 Integrated collaborative technology development program for CO2 sequestration in geologic formations. Energy Convers. Manage. 44, 2699–2712.doi:10.1016/S0196-8904(03)00042-6. . Crossref, Web of Science, Google ScholarKluger J . 2007 Global warming: what now? Our feverish planet badly needs a cure. Time Magazine. 9, 50–109. Google ScholarKlusman R.W . 2003 Evaluation of leakage potential CO2 EOR/sequestration project. Energy Convers. Manage. 33, 1921–1940.doi:10.1016/S0196-8904(02)00226-1. . Crossref, Web of Science, Google ScholarKobak K.I, Knodrasheva N.Y& Turchinovich I.E . 1998 Changes in C pools of peatland and forests in northwestern Russia during the Holocene. Global Planet. Change. 16/17, 75–84.doi:10.1016/S0921-8181(98)00011-3. . Crossref, Web of Science, Google ScholarKohlmaier G.H, Hager C, Ift F, Wurth G, Joos F& Bruno M Forestry mitigation options under future climate change and socioeconomic pressures. 4.1. Future developments of the carbon cycle; the role of the biota/forests within the IPCC stabilization scenarios. Carbon dioxide mitigation in forestry and wood industry, Kohlmaier G.H, Weber M& Houghton R.A . 1998pp. 269–291. Eds. Berlin, Germany:Springer. Crossref, Google ScholarKorschens M& Muller A The static experiment Bad Lauchst dt. Germany. Evaluation of soil organic matter: models using existing datasets., Powlson D.S, Smith P& Smith J.U NATO, ASI 138 1996pp. 369–378. Eds. Heidelberg, Germany:Springer. Google ScholarKrishnamurthy R.V& Machavaram M . 2000 Is there a stable isotope evidence for the fertilization effect?. Proc. Indian Acad. Sci. Earth Planet. Sci. 109, 141–144. Google ScholarLackner K.S . 2003 A guide to CO2 sequestration. Science. 300, 1677–1678.doi:10.1126/science.1079033. . Crossref, PubMed, Web of Science, Google Scholar- Lackner, K. S., Butt, D. P., Wendt, C. H. & Sharp, D. H. 1996 Carbon dioxide disposal in solid form. In Proc. 21st Int. Conf. on Coal Utilization and Fuel System. Clearwater, FL: Coal Technology Association. Google Scholar
- Lackner, K. S., Butt, D. P. & Wendt, C. H. 1997 Magnesite disposal of carbon dioxide. LANL, LA-UR-97-660, Los Alamos, New Mexico. Google Scholar
Lal R . 2001 World cropland soils as a source or sink for atmospheric carbon. Adv. Agron. 71, 145–191. Crossref, Web of Science, Google ScholarLal R Agricultural activities and the global carbon cycle. Nutr. Cycl. Agroecosyst. 70, 2004a 103–116.doi:10.1023/B:FRES.0000048480.24274.0f. . Crossref, Web of Science, Google ScholarLal R Soil carbon sequestration impacts on global climate change and food security. Science. 304, 2004b 1623–1627.doi:10.1126/science.1097396. . Crossref, PubMed, Web of Science, Google ScholarLal R Forest soils and carbon sequestration. Forest Ecol. Manage. 220, 2005a 242–258.doi:10.1016/j.foreco.2005.08.015. . Crossref, Web of Science, Google ScholarLal R Soil carbon sequestration in natural and managed tropical forest ecosystems. J. Sustain. Forestry. 21, 2005b 1–30. Google ScholarLal R World crop residues production and implications of its use as a biofuel. Environ. Int. 31, 2005c 575–584.doi:10.1016/j.envint.2004.09.005. . Crossref, PubMed, Web of Science, Google ScholarLal R . 2006 Enhancing crop yields through restoration of soil organic carbon pool in agricultural lands. Land Degrad. Dev. 17, 197–206.doi:10.1002/ldr.696. . Crossref, Web of Science, Google ScholarLal R, Kimble J.M, Follett R.F& Cole C.V The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. 1998 Chelsea, MI:Ann Arbor Press. Google ScholarLal R, Follett R.F& Kimble J.M . 2003 Achieving soil carbon sequestration in the United States: a challenge to the policy makers. Soil Sci. 168, 827–845.doi:10.1097/01.ss.0000106407.84926.6b. . Crossref, Web of Science, Google ScholarLamb D, Erskine P.D& Parrotta J.A . 2005 Restoration of degraded tropical forest landscape. Science. 310, 1628–1632.doi:10.1126/science.1111773. . Crossref, PubMed, Web of Science, Google Scholar- Landi, A. 2002 Carbon balance in the major soil zones of Saskatchewan. PhD dissertation, University of Saskatchewan, SK, Canada. Google Scholar
Liebig M.A, Varvel G.E, Doran J.W& Wienhold B.J . 2002 Crop sequence and nitrogen fertilization effects on soil properties in the western corn belt. Soil Sci. Soc. Am. J. 66, 596–601. Crossref, Web of Science, Google Scholar- Machette, M. N. 1985 Calcic soils of the southwestern United States. In Soils and quarternary geomorphology of southwestern United States, vol. 203 (D. L. Weide), pp. 1–21. Boulder, CO: Geological Society of America Special Paper. Google Scholar
Malhi S.S, Nyborg M, Harpiak J.T, Heier K& Flore N.A . 1997 Increasing organic carbon and nitrogen under bromegrass with long-term N fertilization. Nutr. Cycl. Agroecosyst. 49, 255–260.doi:10.1023/A:1009727530325. . Crossref, Web of Science, Google ScholarMarion G.M, Schlesinger W.H& Fonteyn P.J . 1985 CALDEP: a regional model for soil CaCO3 (caliche) deposition in southwestern deserts. Soil Sci. 139, 468–481.doi:10.1097/00010694-198505000-00014. . Crossref, Web of Science, Google ScholarMartin J.H& Fitzwater S.E . 1988 Iron deficiency limits of phytoplankton growth in the north-east Pacific sub-arctic. Nature. 331, 341–343.doi:10.1038/331341a0. . Crossref, Web of Science, Google ScholarMartin J.H.K.H, 2002 Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature. 371, 123–129.doi:10.1038/371123a0. . Crossref, Web of Science, Google ScholarMcCarl B.A& Schneider U.A . 2001 Greenhouse gas mitigation in U.S. agriculture and forestry. Science. 294, 2481–2482.doi:10.1126/science.1064193. . Crossref, PubMed, Web of Science, Google Scholar- McGowan, E. 2007 WM joins carbon market model discussion. Waste News 22 January 2007, 23. Google Scholar
Mermut A.R& Landi A Secondary/pedogenic carbonates. Encyclopedia of soil science& Lal R . 2006pp. 1551–1554. Eds. Boca Raton, FL:Taylor and Francis. Google ScholarMilne R& Brown T.A . 1997 Carbon in the vegetation and soils of Great Britain. J. Environ. Manage. 49, 413–433.doi:10.1006/jema.1995.0118. . Crossref, Web of Science, Google Scholar- Monger, H. C. 2002 Pedogenic carbonate: links between biotic and abiotic CaCO3. Presented at the 17th World Cong. Soil Science, 14–21 August 2002, Bangkok, Thailand. Google Scholar
Monger H.C& Gallegos R.A Biotic and abiotic processes and rates of pedogeniccarbonate accumulation in the southwestern U.S., relationship to atmospheric CO2 sequestration. Global climate change and pedogenic carbonates, Lal R, Kimble J.M& Stewart B.A . 2000pp. 273–290. Eds. Boca Raton, FL:CRC Lewis Publishers. Google ScholarMorris E . 2006 Putting the carbon back: black is the new green. Nature. 442, 624–626.doi:10.1038/442624a. . Crossref, PubMed, Web of Science, Google ScholarNilsson L.G . 1986 Data of yield and soil analysis in the long-term soil fertility experiments. J. R. Swed. Acad. Agr. Forestery. Suppl. 18, 32–70. Google ScholarNordt L.C, Wilding L.P& Drees L.R Pedogenic carbonate transformations in leaching soil systems. Global climate change and pedogenic carbonate, Lal R, Kimble J.M& Stewart B.A . 2000pp. 43–64. Eds. Boca Raton, FL:CRC Lewis Publishers. Google ScholarO'Connor W.K, Dahlin D.C, Turner P.C& Walters R.P . 2000 Carbon dioxide sequestration by ex-situ mineral carbonation. Technology. 75, 115–123. Google Scholar- O'Connor, W. K., Dahlin, D. C., Nilsen, D. N., Rush, G. E., Walters, R. P. & Turner, P. C. 2001 Carbon dioxide sequestration by direct mineral carbonation: results from recent studies and current status. See. www.netl.doe.gov/publications/proceedings/o1/carbon_seq/bC2.pdf. Google Scholar
Orr J.C, 2001 Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Global Biogeochem. Cycles. 15, 43–60.doi:10.1029/2000GB001273. . Crossref, Web of Science, Google ScholarPaavilainen E& Paivanen J Peatland forestry: ecology and principles. 1995 New York, NY:Springer. Google ScholarPacala S.W . 2001 Consistent land and atmosphere-based U.S. carbon sink estimates. Science. 292, 2316–2320.doi:10.1126/science.1057320. . Crossref, PubMed, Web of Science, Google ScholarPacala S& Socolow R . 2004 Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science. 305, 968–972.doi:10.1126/science.1100103. . Crossref, PubMed, Web of Science, Google ScholarPacala S.W, 2001 Consistent land- and atmosphere- based U.S. carbon sink estimates. Science. 292, 2316–2319.doi:10.1126/science.1057320. . Crossref, PubMed, Web of Science, Google ScholarPaustian K, Collins H.P& Paul E.A Management controls on soil carbon. Soil organic matter in temperate agroecosystems: long-term experiments in North America, Paul E.A, Paustian K, Elliott T& Cole C.V . 1997pp. 15–49. Eds. Boca Raton, FL:CRC Press. Google Scholar- Prather, M. et al. 2001 Atmospheric chemistry and greenhouse gases. In Climate change 2001: the scientific basis, (eds J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden & D. Xiaosu), pp. 239–287. Cambridge, UK: IPCC, Cambridge University Press. Google Scholar
Rabenhorst M.C& Wilding L.P . 1986 Pedogenesis on the Edwards Plateau, Tesas. III. A new model for the formation of Petrocalcic horizon. Soil Sci. Soc. Am. J. 50, 693–699. Crossref, Web of Science, Google Scholar- Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G. Y. & Solomon, S. 2001 Radiative forcing of climate change. In Climate change 2001: the scientific basis, pp. 349–416. Cambridge, UK: IPCC, Cambridge University Press. Google Scholar
Rasmussen P.E, Albrecht S.L& Smiley R.W . 1998 Soil C and N changes under tillage and cropping systems in semiarid Pacific Northwest agriculture. Soil Till. Res. 47, 197–205.doi:10.1016/S0167-1987(98)00106-8. . Crossref, Web of Science, Google ScholarRaven J.A& Falkowski P.G . 1999 Oceanic sinks for atmospheric CO2. Plant Cell Environ. 22, 741–755.doi:10.1046/j.1365-3040.1999.00419.x. . Crossref, Web of Science, Google ScholarRidley A.M, Slattery W.J, Helyer K.R& Cowling A . 1990 The importance of the carbon cycle to acidification of a grazed pasture. Aust. J. Exp. Agr. 30, 539–544.doi:10.1071/EA9900539. . Crossref, Web of Science, Google ScholarRivkin R.B& Legendre L . 2001 Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science. 291, 2398–2400.doi:10.1126/science.291.5512.2398. . Crossref, PubMed, Web of Science, Google ScholarRojstaczer S& Deverel S.J . 1995 Land subsidence in drained Histosols and highly organic mineral soils of California. Soil Sci. Soc. Am. J. 59, 11 162–11 167. Crossref, Web of Science, Google ScholarRunning S.M . 2006 Is global warming causing more large wildfires?. Science. 313, 927–928.doi:10.1126/science.1130370. . Crossref, PubMed, Web of Science, Google ScholarSauerbeck D.R . 2001 CO2 emissions and C sequestration by agriculture—perspectives and limitations. Nutr. Cycl. Agroecosyst. 60, 253–266.doi:10.1023/A:1012617516477. . Crossref, Web of Science, Google ScholarSchjonning P, Christensen B.T& Christensen B . 1994 Physical and chemical properties of a sandy loam receiving animal manure, mineral fertilizer of no fertilizer for 90 years. Eur. J. Soil Sci. 45, 257–268.doi:10.1111/j.1365-2389.1994.tb00508.x. . Crossref, Web of Science, Google ScholarSchlesinger W.H . 1985 The formation of caliche in soils of Mojave Desert, California. Geeocheem. Cosmochim. ACTA. 49, 57–66.doi:10.1016/0016-7037(85)90191-7. . Crossref, Web of Science, Google ScholarSchlesinger W.H . 1999 Carbon sequestration in soils. Science. 284, 2095 doi:10.1126/science.284.5423.2095. . Crossref, Web of Science, Google ScholarSchlesinger W.H . 2006 Carbon trading. Science. 314, 1217 doi:10.1126/science.1137177. . Crossref, PubMed, Web of Science, Google ScholarScholes R.J& Noble I.R . 2001 Storing carbon on land. Science. 294, 1012–1013.doi:10.1126/science.1065307. . Crossref, PubMed, Web of Science, Google ScholarSchnitzer M . 1991 Soil organic mater—the next 75 years. Soil Sci. 151, 41–58.doi:10.1097/00010694-199101000-00008. . Crossref, Web of Science, Google ScholarSchrag D.P . 2007 Preparing to capture carbon. Science. 315, 812–813.doi:10.1126/science.1137632. . Crossref, PubMed, Web of Science, Google ScholarSeibel B.A& Walsh P.J . 2001 Potential impacts of CO2 injection on deep-sea biota. Science. 294, 319–320.doi:10.1126/science.1065301. . Crossref, PubMed, Web of Science, Google ScholarService R.F . 2007 Cellulosic ethanol: biofuel researchers prepare to reap a new harvest. Science. 315, 1488–1491.doi:10.1126/science.315.5818.1488. . Crossref, PubMed, Web of Science, Google ScholarSix J.T, Conant R.T, Paul E.A& Paustian K . 2002 Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil. 241, 155–176.doi:10.1023/A:1016125726789. . Crossref, Web of Science, Google ScholarSmith P, Powlson S.D.S, Glendining M.J& Smith J.U . 1997 Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Global Change Biol. 3, 67–79.doi:10.1046/j.1365-2486.1997.00055.x. . Crossref, Web of Science, Google ScholarSobecki T.M& Wilding L.P . 1983 Formation of calcic and argillic horizons in selected soils of the Texas coast prairie. Soil Sci. Soc. Am. J. 47, 707–715. Crossref, Web of Science, Google ScholarSomerville C . 2006 The billion ton biofuel vision. Science. 312, 1277 doi:10.1126/science.1130034. . Crossref, PubMed, Web of Science, Google Scholar- Squires, V., Glenn, E. P. & Ayoub A. T. (eds) 1995 Combating global climate change by combating land degradation. In Proc. Workshop held in Nairobi, Kenya 4–8 Sept. 1995. Nairobi, Kenya: UNEP. Google Scholar
Stephanopoulos G . 2007 Challes in engineering microbes for biofuels production. Science. 315, 801–804.doi:10.1126/science.1139612. . Crossref, PubMed, Web of Science, Google ScholarStuddert G.A& Echeverria H.E . 2000 Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Sci. Soc. Am. J. 64, 1496–1503. Crossref, Web of Science, Google ScholarTans P.P, Fung I.Y& Takahashi T . 1990 Observational constraints on the global atmospheric CO2 budget. Science. 247, 1431–1438.doi:10.1126/science.247.4949.1431. . Crossref, PubMed, Web of Science, Google ScholarTilman D, Hill J& Lehman C . 2006 Carbon-negative biofuels from low-input high-diversity grassland biomass. Science. 314, 1598–1606.doi:10.1126/science.1133306. . Crossref, PubMed, Web of Science, Google ScholarTownsend A.R, Asner G.P, White J.W.C& Tans P.P . 2002 Land use effects on atmospheric 13C imply a sizeable terrestrial CO2 sink in tropical latitudes. Geophys. Res. Lett. 29, 68/1–68/4.doi:10.1029/2001GL013454. . Crossref, Web of Science, Google ScholarTsang C.F, Benson S.M, Kogelski B& Smith R.E . 2002 Scientific considerations related to regulation development for CO2 sequestration in brine formations. Environ. Geol. 42, 275–281.doi:10.1007/s00254-001-0497-4. . Crossref, Web of Science, Google ScholarUhlen G . 1991 Long-term effects of fertilizers, manures, straw and crop rotation on total C in soil. Acta Agr. Scand. 41, 119–127. Crossref, Google ScholarUhlen G& Tveitnes S . 1995 Effects of long-term crop rotation, fertilizers, farm manure and straw on soil productivity. Nor. J. Agr. Sci. 9, 143–161. Google ScholarVan Dijk H Survey of Dutch soil organic research with regard to humification and degradation rates in arable land. Use seminar on land degradation, Boels D.D, Davis B& Johnston A.E . 1982pp. 133–143. Eds. Rotterdam, The Netherlands:Balkema. Google Scholar- Wald, M. L. 2007 Is ethanol for the long haul? Sci. Am. January 2007, pp. 42–49. Google Scholar
- Walsh, B. 2007 Greenhouse airlines: traveling by jet is a dirty business. As passenger load increases, enviros look for ways to cut back the carbon. Time, 12 Feb. 2007, 57. Google Scholar
Warner B.G, Clymo R.S& Tolonen K . 1993 Applications of peat accumulation at Point Escuminac, New Brunswick. Q. Res. 39, 245–248.doi:10.1006/qres.1993.1028. . Crossref, Web of Science, Google ScholarWest T.O& Post W.M . 2002 Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci. Soc. Am. J. 66, 1930–1946. Crossref, Web of Science, Google ScholarWesterling A.L, Hidalgo H.G, Cayan D.R& Swetnam T.W . 2006 Warming and earlier spring increase western U.S. forest wildfire activity. Science. 313, 940–943.doi:10.1126/science.1128834. . Crossref, PubMed, Web of Science, Google ScholarWilding L.P Comments on paper by Lal. Carbon sequestration in soils: science, monitoring and beyond, Rosenberg N, Izaurralde R.C& Malone E.L . 1999pp. 146–149. Eds. Columbus, OH:Battelle Press. Google ScholarWilhelm W.V, Johnson J.M.F, Hatfield J.L, Vorhees W.B& Linden D.R . 2004 Crop and soil productivity response to crop residue management: a literature review. Agron. J. 96, 1–17. Crossref, Web of Science, Google ScholarWitter E, Mortensson A.M& Garcia F.V . 1993 Size of the microbial mass in a long-term field experiment as affected by different N fertilizers. Soil Biol. Biochem. 28, 659–669.doi:10.1016/0038-0717(93)90105-K. . Crossref, Web of Science, Google Scholar- WMO Greenhouse gas bulletin: the state of greenhouse gases in the atmosphere using global observations up to December 2004. 2006 Geneva, Switzerland:World Meteorological Organization. Google Scholar
Wofsy S.C . 2001 Where has all the carbon gone?. Science. 292, 2261–2263.doi:10.1126/science.1061077. . Crossref, PubMed, Web of Science, Google ScholarWosten J.H, Ismail A.B& Van Wijic A.L . 1997 Peat subsidence and its practical implications: a case study in Malaysia. Geoderma. 78, 25–36.doi:10.1016/S0016-7061(97)00013-X. . Crossref, Web of Science, Google Scholar