Abstract
The term levels of analysis has been used in several ways: to distinguish between ultimate and proximate levels, to categorize different kinds of research questions and to differentiate levels of reductionism. Because questions regarding ultimate function and proximate mechanisms are logically distinct, I suggest that distinguishing between these two levels is the best use of the term. Integrating across levels in research has potential risks, but many benefits. Consideration at one level can help generate novel hypotheses at the other, define categories of behaviour and set criteria that must be addressed. Taking an adaptationist stance thus strengthens research on proximate mechanisms. Similarly, it is critical for researchers studying adaptation and function to have detailed knowledge of proximate mechanisms that may constrain or modulate evolutionary processes. Despite the benefits of integrating across ultimate and proximate levels, failure to clearly identify levels of analysis, and whether or not hypotheses are exclusive alternatives, can create false debates. Such non-alternative hypotheses may occur between or within levels, and are not limited to integrative approaches. In this review, I survey different uses of the term levels of analysis and the benefits of integration, and highlight examples of false debate within and between levels. The best integrative biology reciprocally uses ultimate and proximate hypotheses to generate a more complete understanding of behaviour.
References
- 1
Bolhuis J. J.& Macphail E. M. . 2001A critique of the neuroecology of learning and memory. Trends Cogn. Sci. 5, 426–433.doi:10.1016/S1364-6613(00)01753-8 (doi:10.1016/S1364-6613(00)01753-8). Crossref, PubMed, ISI, Google Scholar - 2
Bolhuis J. J. . 2005Function and mechanism in neuroecology: looking for clues. Anim. Biol. 55, 457–490.doi:10.1163/157075605774840987 (doi:10.1163/157075605774840987). Crossref, ISI, Google Scholar - 3
Francis R. C. . 2004Why men won't ask for directions: the seductions of sociobiology. Princeton, NJ: Princeton University Press. Google Scholar - 4
- 5
Baker J. R. . 1938The evolution of breeding seasons. Evolution: essays on aspects of evolutionary biology (ed.& DeBeer G. B. ), pp. 161–177. Oxford, UK: Clarendon Press. Google Scholar - 6
Mayr E. . 1961Cause and effect in biology. Science 134, 1501–1506.doi:10.1126/science.134.3489.1501 (doi:10.1126/science.134.3489.1501). Crossref, PubMed, ISI, Google Scholar - 7
Hogan J. A.& Bolhuis J. J. . 2008Tinbergen's four questions and contemporary behavioral biology. Tinbergen's legacy: function and mechanism in behavioral biology (eds, Bolhuis J. J.& Verhulst S. ), pp. 25–34. Cambridge, UK: Cambridge University Press. Google Scholar - 8
Sherman P. W. . 1988The levels of analysis. Anim. Behav. 36, 616–619.doi:10.1016/S0003-3472(88)80039-3 (doi:10.1016/S0003-3472(88)80039-3). Crossref, ISI, Google Scholar - 9
Tinbergen N. . 1963On aims and methods in ethology. Z. Tierpsychol. 20, 410–433.doi:10.1111/j.1439-0310.1963.tb01161.x (doi:10.1111/j.1439-0310.1963.tb01161.x). Crossref, Google Scholar - 10
Alcock J.& Sherman P. . 1994The utility of the proximate-ultimate dichotomy in ethology. Ethology 96, 58–62.doi:10.1111/j.1439-0310.1994.tb00881.x (doi:10.1111/j.1439-0310.1994.tb00881.x). Crossref, ISI, Google Scholar - 11
Hogan J. A. . 1994The concept of cause in the study of behavior. Causal mechanisms of behavioural development (eds, Hogan J. A.& Bolhuis J. J. ), pp. 3–15. Cambridge, UK: Cambridge University Press. Crossref, Google Scholar - 12
Fleming A. S.& Walsh C. . 1994Neuropsychology of maternal-behavior in the rat: c-fos expression during mother–litter interactions. Psychoneuroendocrinology 19, 429–443.doi:10.1016/0306-4530(94)90030-2 (doi:10.1016/0306-4530(94)90030-2). Crossref, PubMed, ISI, Google Scholar - 13
Mello C. V., Vicario D. S.& Clayton D. F. . 1992Song presentation induces gene-expression in the songbird forebrain. Proc. Natl Acad. Sci. USA 89, 6818–6822.doi:10.1073/pnas.89.15.6818 (doi:10.1073/pnas.89.15.6818). Crossref, PubMed, ISI, Google Scholar - 14
Chew S. J., Mello C., Nottebohm F., Jarvis E.& Vicario D. S. . 1995Decrements in auditory responses to a repeated conspecific song are long-lasting and require 2 periods of protein-synthesis in the songbird forebrain. Proc. Natl Acad. Sci. USA 92, 3406–3410.doi:10.1073/pnas.92.8.3406 (doi:10.1073/pnas.92.8.3406). Crossref, PubMed, ISI, Google Scholar - 15
MacDougall-Shackleton S. A., Hulse S. H.& Ball G. F. . 1998Neural bases of song preferences in female zebra finches (Taeniopygia guttata). Neuroreport 9, 3047–3052.doi:10.1097/00001756-199809140-00024 (doi:10.1097/00001756-199809140-00024). Crossref, PubMed, ISI, Google Scholar - 16
Eda-Fujiwara H., Satoh R., Bolhuis J. J.& Kimura T. . 2003Neuronal activation in female budgerigars is localized and related to male song complexity. Eur. J. Neurosci. 17, 149–154.doi:10.1046/j.1460-9568.2003.02414.x (doi:10.1046/j.1460-9568.2003.02414.x). Crossref, PubMed, ISI, Google Scholar - 17
Gentner T. Q., Hulse S. H., Duffy D.& Ball G. F. . 2001Response biases in auditory forebrain regions of female songbirds following exposure to sexually relevant variation in male song. J. Neurobiol. 46, 48–58.doi:10.1002/1097-4695(200101)46:1<48::AID-NEU5>3.0.CO;2-3 (doi:10.1002/1097-4695(200101)46:1<48::AID-NEU5>3.0.CO;2-3). Crossref, PubMed, Google Scholar - 18
Maney D. L., MacDougall-Shackleton E. A., MacDougall-Shackleton S. A., Ball G. F.& Hahn T. P. . 2003Immediate early gene response to hearing song correlates with receptive behavior and depends on dialect in a female songbird. J. Comp. Physiol. A-Neuroethol. Sensory Neural Behav. Physiol. 189, 667–674.doi:10.1007/s00359-003-0441-z (doi:10.1007/s00359-003-0441-z). Crossref, PubMed, ISI, Google Scholar - 19
Terpstra N. J., Bolhuis J. J., Riebel K., van der Burg J. M. M.& den Boer-Visser A. M. . 2006Localized brain activation specific to auditory memory in a female songbird. J. Comp. Neurol. 494, 784–791.doi:10.1002/cne.20831 (doi:10.1002/cne.20831). Crossref, PubMed, ISI, Google Scholar - 20
Gobes S. M. H.& Bolhuis J. J. . 2007Birdsong memory: a neural dissociation between song recognition and production. Curr. Biol. 17, 789–793.doi:10.1016/j.cub.2007.03.059 (doi:10.1016/j.cub.2007.03.059). Crossref, PubMed, ISI, Google Scholar - 21
Gobes S. M. H., Zandbergen M. A.& Bolhuis J. J. . 2010Memory in the making: localized brain activation related to song learning in young songbirds. Proc. R. Soc. B 277, 3343–3351.doi:10.1098/rspb.2010.0870 (doi:10.1098/rspb.2010.0870). Link, ISI, Google Scholar - 22
Bolhuis J. J.& Gahr M. . 2006Neural mechanisms of birdsong memory. Nat. Rev. Neurosci. 7, 347–357.doi:10.1038/nrn1904 (doi:10.1038/nrn1904). Crossref, PubMed, ISI, Google Scholar - 23
Kruse A. A., Stripling R.& Clayton D. F. . 2004Context-specific habituation of the zenk gene response to song in adult zebra finches. Neurobiol. Learn. Memory 82, 99–108.doi:10.1016/j.nlm.2004.05.001 (doi:10.1016/j.nlm.2004.05.001). Crossref, PubMed, ISI, Google Scholar - 24
McKenzie T. L. B., Hernandez A. M.& MacDougall-Shackleton S. A. . 2006Experience with songs in adulthood reduces song-induced gene expression in songbird auditory forebrain. Neurobiol. Learn. Memory 86, 330–335.doi:10.1016/j.nlm.2006.05.002 (doi:10.1016/j.nlm.2006.05.002). Crossref, PubMed, ISI, Google Scholar - 25
Hernandez A. M.& MacDougall-Shackleton S. A. . 2004Effects of early song experience on song preferences and song control and auditory brain regions in female house finches (Carpodacus mexicanus). J. Neurobiol. 59, 247–258.doi:10.1002/neu.10312 (doi:10.1002/neu.10312). Crossref, PubMed, Google Scholar - 26
Hernandez A. M., Phillmore L. S.& MacDougall-Shackleton S. A. . 2008Effects of learning on song preferences and Zenk expression in female songbirds. Behav. Process. 77, 278–284.doi:10.1016/j.beproc.2007.11.001 (doi:10.1016/j.beproc.2007.11.001). Crossref, PubMed, ISI, Google Scholar - 27
- 28
- 29
Reeve H. K.& Sherman P. W. . 1993Adaptation and the goals of evolutionary research. Q. Rev. Biol. 68, 1–32.doi:10.1111/j.1469-185X.1993.tb00731.x (doi:10.1111/j.1469-185X.1993.tb00731.x). Crossref, ISI, Google Scholar - 30
Ryan M. J. . 2005The evolution of behaviour, and integrating it towards a complete and correct understanding of behavioural biology. Anim. Biol. 55, 419–439.doi:10.1163/157075605774841012 (doi:10.1163/157075605774841012). Crossref, ISI, Google Scholar - 31
McNamara J. M.& Houston A. I. . 2009Integrating function and mechanism. Trends Ecol. Evol. 24, 670–675.doi:10.1016/j.tree.2009.05.011 (doi:10.1016/j.tree.2009.05.011). Crossref, PubMed, ISI, Google Scholar - 32
- 33
Gould S. J.& Lewontin R. C. . 1979The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205, 581–598.doi:10.1098/rspb.1979.0086 (doi:10.1098/rspb.1979.0086). Link, ISI, Google Scholar - 34
MacDougall-Shackleton S. A.& Ball G. F. . 2002Revising hypotheses does not indicate a flawed approach: reply to Bolhuis and Macphail. Trends Cogn. Sci. 6, 68–69.doi:10.1016/S1364-6613(00)01847-7 (doi:10.1016/S1364-6613(00)01847-7). Crossref, PubMed, ISI, Google Scholar - 35
Sherry D. F. . 2005Do ideas about function help in the study of causation?Anim. Biol. 55, 441–456.doi:10.1163/157075605774840950 (doi:10.1163/157075605774840950). Crossref, ISI, Google Scholar - 36
Sherry D. F. . 2006Neuroecology. Annu. Rev. Psychol. 57, 167–197.doi:10.1146/annurev.psych.56.091103.070324 (doi:10.1146/annurev.psych.56.091103.070324). Crossref, PubMed, ISI, Google Scholar - 37
Penn D. J. . 2002The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology 108, 1–21.doi:10.1046/j.1439-0310.2002.00768.x (doi:10.1046/j.1439-0310.2002.00768.x). Crossref, ISI, Google Scholar - 38
Hampton R. R.& Shettleworth S. J. . 1996Hippocampal lesions impair memory for location but not color in passerine birds. Behav. Neurosci. 110, 831–835.doi:10.1037/0735-7044.110.4.831 (doi:10.1037/0735-7044.110.4.831). Crossref, PubMed, ISI, Google Scholar - 39
Sherry D. F.& Vaccarino A. L. . 1989Hippocampus and memory for food caches in black-capped chickadees. Behav. Neurosci. 103, 308–318.doi:10.1037/0735-7044.103.2.308 (doi:10.1037/0735-7044.103.2.308). Crossref, ISI, Google Scholar - 40
Hamilton W. D. . 1964The genetical evolution of social behaviour. J. Theoret. Biol. 7, 1–52.doi:10.1016/0022-5193(64)90038-4 (doi:10.1016/0022-5193(64)90038-4). Crossref, PubMed, ISI, Google Scholar - 41
Fisher R. A. . 1930The genetical theory of natural selection. Oxford, UK: Clarendon. Crossref, Google Scholar - 42
Trivers R. L.& Willard D. E. . 1973Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92.doi:10.1126/science.179.4068.90 (doi:10.1126/science.179.4068.90). Crossref, PubMed, ISI, Google Scholar - 43
Ellegren H., Gustafsson L.& Sheldon B. C. . 1996Sex ratio adjustment in relation to paternal attractiveness in a wild bird population. Proc. Natl Acad. Sci. USA 93, 11 723–11 728.doi:10.1073/pnas.93.21.11723 (doi:10.1073/pnas.93.21.11723). Crossref, ISI, Google Scholar - 44
Correa S. M., Adkins-Regan E.& Johnson P. A. . 2005High progesterone during avian meiosis biases sex ratios toward females. Biol. Lett. 1, 215–218.doi:10.1098/rsbl.2004.0283 (doi:10.1098/rsbl.2004.0283). Link, ISI, Google Scholar - 45
Alonso-Alvarez C. . 2006Manipulation of primary sex-ratio: an updated review. Avian Poultry Biol. Rev. 17, 1–20.doi:10.3184/147020606783437930 (doi:10.3184/147020606783437930). Crossref, ISI, Google Scholar - 46
Riebel K. . 2003The ‘mute’ sex revisited: vocal production and perception learning in female songbirds. Adv. Study Behav. 33, 49–86.doi:10.1016/S0065-3454(03)33002-5 (doi:10.1016/S0065-3454(03)33002-5). Crossref, ISI, Google Scholar - 47
Ikebuchi M., Futamatsu M.& Okanoya K. . 2003Sex differences in song perception in Bengalese finches measured by the cardiac response. Anim. Behav. 65, 123–130.doi:10.1006/anbe.2002.2012 (doi:10.1006/anbe.2002.2012). Crossref, ISI, Google Scholar - 48
Searcy W. A.& Brenowitz E. A. . 1988Sexual differences in species recognition of avian song. Nature 332, 152–154.doi:10.1038/332152a0 (doi:10.1038/332152a0). Crossref, ISI, Google Scholar - 49
Nottebohm F.& Arnold A. P. . 1976Sexual dimorphism in vocal control areas of songbird brain. Science 194, 211–213.doi:10.1126/science.959852 (doi:10.1126/science.959852). Crossref, PubMed, ISI, Google Scholar - 50
Canady R. A., Kroodsma D. E.& Nottebohm F. . 1984Population differences in complexity of a learned skill are correlated with the brain space involved. Proc. Natl Acad. Sci. USA 81, 6232–6234.doi:10.1073/pnas.81.19.6232 (doi:10.1073/pnas.81.19.6232). Crossref, PubMed, ISI, Google Scholar - 51
Brenowitz E. A., Lent K.& Kroodsma D. E. . 1995Brain space for learned song in birds develops independently of song learning. J. Neurosci. 15, 6281–6286. Crossref, PubMed, ISI, Google Scholar - 52
Brenowitz E. A., Nalls B., Kroodsma D. E.& Horning C. . 1994Female marsh wrens do not provide evidence of anatomical specializations of song nuclei for perception of male song. J. Neurobiol. 25, 197–208.doi:10.1002/neu.480250210 (doi:10.1002/neu.480250210). Crossref, PubMed, Google Scholar - 53
Fortune E. S.& Margoliash D. . 1995Parallel pathways and convergence onto HVc and adjacent neostriatum of adult zebra finches (Taeniopygia guttata). J. Comp. Neurol. 360, 413–441.doi:10.1002/cne.903600305 (doi:10.1002/cne.903600305). Crossref, PubMed, ISI, Google Scholar - 54
Vates G. E., Broome B. M., Mello C. V.& Nottebohm F. . 1996Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches (Taenopygia guttata). J. Comp. Neurol. 366, 613–642.doi:10.1002/(SICI)1096-9861(19960318)366:4<613::AID-CNE5>3.0.CO;2-7 (doi:10.1002/(SICI)1096-9861(19960318)366:4<613::AID-CNE5>3.0.CO;2-7). Crossref, PubMed, ISI, Google Scholar - 55
Brenowitz E. A. . 1991Altered perception of species-specific song by female birds after lesions of a forebrain nucleus. Science 251, 303–305.doi:10.1126/science.1987645 (doi:10.1126/science.1987645). Crossref, PubMed, ISI, Google Scholar - 56
Burt J. M., Lent K. L., Beecher M. D.& Brenowitz E. A. . 2000Lesions of the anterior forebrain song control pathway in female canaries affect song perception in an operant task. J. Neurobiol. 42, 1–13.doi:10.1002/(SICI)1097-4695(200001)42:1<1::AID-NEU1>3.0.CO;2-6 (doi:10.1002/(SICI)1097-4695(200001)42:1<1::AID-NEU1>3.0.CO;2-6). Crossref, PubMed, Google Scholar - 57
Del Negro C., Gahr M., Leboucher G.& Kreutzer M. . 1998The selectivity of sexual responses to song displays: effects of partial chemical lesion of the HVC in female canaries. Behav. Brain Res. 96, 151–159.doi:10.1016/S0166-4328(98)00009-6 (doi:10.1016/S0166-4328(98)00009-6). Crossref, PubMed, ISI, Google Scholar - 58
Leitner S.& Catchpole C. K. . 2002Female canaries that respond and discriminate more between male songs of different quality have a larger song control nucleus (HVC) in the brain. J. Neurobiol. 52, 294–301.doi:10.1002/neu.10085 (doi:10.1002/neu.10085). Crossref, PubMed, Google Scholar - 59
Lonstein J. S.& Gammie S. C. . 2002Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci. Biobehav. Rev. 26, 869–888.doi:10.1016/S0149-7634(02)00087-8 (doi:10.1016/S0149-7634(02)00087-8). Crossref, PubMed, ISI, Google Scholar - 60
Nelson R. J. . 2005An introduction to behavioral endocrinology, 3rd edn.Sunderland, MA: Sinauer. Google Scholar - 61
Lehrman D. S.& Brody P. . 1961Does prolactin induce incubation behavior in the ring dove?J. Endocrinol. 22, 369–375.doi:10.1677/joe.0.0220269 (doi:10.1677/joe.0.0220269). Crossref, ISI, Google Scholar - 62
Gubernick D. J.& Nelson R. J. . 1989Prolactin and paternal behavior in the biparental California mouse, Peromyscus californicus. Horm. Behav. 23, 203–210.doi:10.1016/0018-506X(89)90061-5 (doi:10.1016/0018-506X(89)90061-5). Crossref, PubMed, ISI, Google Scholar - 63
Beach F. A.& Holz-Tucker M. . 1949Effects of different concentrations of androgen upon sexual behavior in castrated male rats. J. Comp. Physiol. Psychol. 42, 433–453.doi:10.1037/h0059086 (doi:10.1037/h0059086). Crossref, PubMed, ISI, Google Scholar - 64
Camazine B., Gartska W., Tokarz R.& Crews D. . 1980Effects of castration and androgen replacement on male courtship behavior in the red-sided garter snake (Thamnophis sirtalis). Horm. Behav. 14, 358–372.doi:10.1016/0018-506X(80)90025-2 (doi:10.1016/0018-506X(80)90025-2). Crossref, PubMed, ISI, Google Scholar - 65
Kozmik Z. . 2005Pax genes in eye development and evolution. Curr. Opin. Genet. Dev. 15, 430–438.doi:10.1016/j.gde.2005.05.001 (doi:10.1016/j.gde.2005.05.001). Crossref, PubMed, ISI, Google Scholar - 66
Shubin N., Tabin C.& Carroll S. . 2009Deep homology and the origins of evolutionary novelty. Nature 457, 818–823.doi:10.1038/nature07891 (doi:10.1038/nature07891). Crossref, PubMed, ISI, Google Scholar - 67
Dawson A., King V. M., Bentley G. E.& Ball G. F. . 2001Photoperiodic control of seasonality in birds. J. Biol. Rhythms 16, 365–380.doi:10.1177/074873001129002079 (doi:10.1177/074873001129002079). Crossref, PubMed, ISI, Google Scholar - 68
Nicholls T. J., Goldsmith A. R.& Dawson A. . 1988Photorefractoriness in birds and comparison with mammals. Physiol. Rev. 68, 133–176. Crossref, PubMed, ISI, Google Scholar - 69
Wiltschko W.& Wiltschko R. . 1972Magnetic compass of European robins. Science 176, 62–64.doi:10.1126/science.176.4030.62 (doi:10.1126/science.176.4030.62). Crossref, PubMed, ISI, Google Scholar - 70
Liedvogel M.& Mouritsen H. . 2010Cryptochromes: a potential magnetoreceptor: what do we know and what do we want to know?J. R. Soc. Interface 7, S147–S162.doi:10.1098/rsif.2009.0411.focus (doi:10.1098/rsif.2009.0411.focus). Link, ISI, Google Scholar - 71
Parsons P. A. . 1992Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity 68, 361–364. Crossref, PubMed, ISI, Google Scholar - 72
Møller A. P.& Swaddle J. P. . 1998Asymmetry, developmental stability, and evolution. Oxford, UK: Oxford University Press. Google Scholar - 73
Swaddle J. P. . 2003Fluctuating asymmetry, animal behavior, and evolution. Adv. Study Behav. 32, 169–205.doi:10.1016/S0065-3454(03)01004-0 (doi:10.1016/S0065-3454(03)01004-0). Crossref, ISI, Google Scholar - 74
Møller A. P.& Thornhill R. . 1998Bilateral symmetry and sexual selection: a meta-analysis. Am. Nat. 151, 174–192.doi:10.1086/286110 (doi:10.1086/286110). Crossref, PubMed, ISI, Google Scholar - 75
Swaddle J. P. . 1999Limits to length asymmetry detection in starlings: implications for biological signalling. Proc. R. Soc. Lond. B 266, 1299–1303.doi:10.1098/rspb.1999.0778 (doi:10.1098/rspb.1999.0778). Link, ISI, Google Scholar - 76
Swaddle J. P., Ruff D. A., Page L. C., Frame A. M.& Long V. A. . 2008A test of receiver perceptual performance: European starlings' ability to detect asymmetry in a naturalistic trait. Anim. Behav. 76, 487–495.doi:10.1016/j.anbehav.2008.05.005 (doi:10.1016/j.anbehav.2008.05.005). Crossref, ISI, Google Scholar - 77
Palmer A. R. . 1994Fluctuating asymmetry analyses: a primer. Developmental instability: its origins and evolutionary implications (ed.& Markow T. A. ), pp. 335–364. Dordrecht, The Netherlands: Kluwer. Google Scholar - 78
Brenowitz E. A.& Arnold A. P. . 1986Interspecific comparisons of the size of neural song control regions and song complexity in duetting birds: evolutionary implications. J. Neurosci. 6, 2875–2879. Crossref, PubMed, ISI, Google Scholar - 79
DeVoogd T. J., Houtman A. M.& Falls J. B. . 1995White-throated sparrow morphs that differ in song production-rate also differ in the anatomy of some song-related brain-areas. J. Neurobiol. 28, 202–213.doi:10.1002/neu.480280207 (doi:10.1002/neu.480280207). Crossref, PubMed, Google Scholar - 80
Gahr M., Sonnenschein E.& Wickler W. . 1998Sex difference in the size of the neural song control regions in a dueting songbird with similar song repertoire size of males and females. J. Neurosci. 18, 1124–1131. Crossref, PubMed, ISI, Google Scholar - 81
Jawor J. M.& MacDougall-Shackleton S. A. . 2008Seasonal and sex-related variation in song control nuclei in a species with near-monomorphic song, the northern cardinal. Neurosci. Lett. 443, 169–173.doi:10.1016/j.neulet.2008.07.085 (doi:10.1016/j.neulet.2008.07.085). Crossref, PubMed, ISI, Google Scholar - 82
MacDougall-Shackleton S. A.& Ball G. F. . 1999Comparative studies of sex differences in the song-control system of songbirds. Trends Neurosci. 22, 432–436.doi:10.1016/S0166-2236(99)01434-4 (doi:10.1016/S0166-2236(99)01434-4). Crossref, PubMed, ISI, Google Scholar - 83
Ball G. F., Riters L. V., MacDougall-Shackleton S. A.& Balthazart J. . 2008Sex differences in brain and behavior and the neuroendocrine control of the motivation to sing. The neuroscience of birdsong (eds, Ziegler H. P.& Marler P. ), pp. 320–331. Cambridge, UK: Cambridge University Press. Google Scholar - 84
Hall Z. J., MacDougall-Shackleton S. A., Osorio-Beristain M.& Murphy T. G. . 2010Male bias in the song control system despite female bias in song rate in streak-backed orioles (Icterus pustulatus). Brain Behav. Evol. 76, 168–175.doi:10.1159/000320971 (doi:10.1159/000320971). Crossref, PubMed, ISI, Google Scholar - 85
Gahr M., Metzdorf R., Schmidl D.& Wickler W. . 2008Bi-directional sexual dimorphisms of the song control nucleus HVC in a songbird with unison song. PLoS ONE 3, e3073.doi:10.1371/journal.pone.0003073 (doi:10.1371/journal.pone.0003073). Crossref, PubMed, ISI, Google Scholar - 86
Arnold A. P. . 2004Sex chromosomes and brain gender. Nat. Rev. Neurosci. 5, 701–708.doi:10.1038/nrn1494 (doi:10.1038/nrn1494). Crossref, PubMed, ISI, Google Scholar


