Philosophical Transactions of the Royal Society B: Biological Sciences

    The single handedness of biological molecules has fascinated scientists and laymen alike since Pasteur's first painstaking separation of the enantiomorphic crystals of a tartrate salt over 150 years ago. More recently, a number of theoretical and experimental investigations have helped to delineate models for how one enantiomer might have come to dominate over the other from what presumably was a racemic prebiotic world. Mechanisms for enantioenrichment that include either chemical or physical processes, or a combination of both, are discussed in the context of experimental studies in autocatalysis and in the phase behaviour of chiral molecules.

    Footnotes

    One contribution of 17 to a Discussion Meeting Issue ‘The chemical origins of life and its early evolution’.

    References

    • 1
      Heilbronner E.& Dunitz J. D.. 1993Reflections on symmetry in chemistry … and elsewhere. Basel, Germany: Verlag Helvetica Chimica Acta. Google Scholar
    • 2
      Pizzarello S.. 2006The chemistry of life's origin: a carbonaceous meteorite perspective. Acc. Chem. Res 39, 231–237.doi:10.1021/ar050049f (doi:10.1021/ar050049f). Crossref, PubMed, ISIGoogle Scholar
    • 3
      Quack M.. 2002How important is parity violation for molecular and biomolecular chirality?Angew. Chem. Int. Ed. 41, 4618–4630.doi:10.1002/anie.200290005 (doi:10.1002/anie.200290005). Crossref, PubMed, ISIGoogle Scholar
    • 4
      Mislow K.. 2003Absolute asymmetric synthesis: a commentary. Collect. Czech. Chem. Commun. 68, 849–864. CrossrefGoogle Scholar
    • 5
      Calvin M.. 1969Molecular evolution. Oxford, UK: Oxford University Press. Google Scholar
    • 6
      Frank F. C.. 1953On spontaneous asymmetric synthesis. Biochim. Biophys. Acta 11, 459–463.doi:10.1016/0006-3002(53)90082-1 (doi:10.1016/0006-3002(53)90082-1). Crossref, PubMed, ISIGoogle Scholar
    • 7
      Wynberg H.. 1989Asymmetric autocatalysis: facts and fancy. J. Macromol. Sci. Chem A26, 1033–1041.doi:10.1080/00222338908052033 (doi:10.1080/00222338908052033). CrossrefGoogle Scholar
    • 8
      Soai K., Shibata T., Morioka H.& Choji K.. 1995Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378, 767–768.doi:10.1038/378767a0 (doi:10.1038/378767a0). Crossref, ISIGoogle Scholar
    • 9
      Shibata J., Yamamoto T., Matsumoto N., Yonekubo S., Osanai S.& Soai K.. 1998Amplification of a slight enantiomeric imbalance in molecules based on asymmetric autocatalysis: the first correlation between high enantiomeric enrichment in a chiral molecule and circularly polarized light. J. Am. Chem. Soc. 120, 12 157–12 158.doi:10.1021/ja980815w (doi:10.1021/ja980815w). Crossref, ISIGoogle Scholar
    • 10
      Soai K., Osanai S., Kadowaki K., Yonekubo S., Shibata T.& Sato I.. 1999d- and l-quartz-promoted highly enantioselective synthesis of a chiral compound. J. Am. Chem. Soc. 121, 11 235–11 236.doi:10.1021/ja993128t (doi:10.1021/ja993128t). Crossref, ISIGoogle Scholar
    • 11
      Kawasaki T., Matsumura Y., Tsutsumi T., Suzuki K., Ito M.& Soai K.. 2009Asymmetric autocatalysis triggered by carbon isotope (13C/12C) chirality. Science 324, 492–495.doi:10.1126/science.1170322 (doi:10.1126/science.1170322). Crossref, PubMed, ISIGoogle Scholar
    • 12
      Blackmond D. G., McMillan C. R., Ramdeehul S., Schorm A.& Brown J. M.. 2001Origins of asymmetric amplification in autocatalytic alkylzinc additions. J. Am. Chem. Soc. 123, 10 103–10 104.doi:10.1021/ja0165133 (doi:10.1021/ja0165133). Crossref, ISIGoogle Scholar
    • 13
      Girard C.& Kagan H. B.. 1998Nonlinear effects in asymmetric synthesis and stereoselective reactions: ten years of investigation. Angew. Chem. Int. Ed. 37, 2923–2959. Crossref, ISIGoogle Scholar
    • 14
      Buono F. G.& Blackmond D. G.. 2003Kinetic evidence for a tetrameric transition state in the asymmetric autocatalytic alkylation of pyrimidyl aldehydes. J. Am. Chem. Soc. 125, 8978.doi:10.1021/ja034705n (doi:10.1021/ja034705n). Crossref, PubMed, ISIGoogle Scholar
    • 15
      Blackmond D. G.. 2004Asymmetric autocatalysis and its implications for the origin of homochirality. Proc. Natl Acad. Sci. USA 101, 5732–5736.doi:10.1073/pnas.0308363101 (doi:10.1073/pnas.0308363101). Crossref, PubMed, ISIGoogle Scholar
    • 16
      Jacques J., Collet A.& Wilen S. H.. 1994Enantiomers, racemates and resolutions, 2nd edn. Melbourne, FL: Krieger Publishing Company. Google Scholar
    • 17
      Viedma C.. 2005Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 94, 065504.doi:10.1103/PhysRevLett.94.065504 (doi:10.1103/PhysRevLett.94.065504). Crossref, PubMed, ISIGoogle Scholar
    • 18
      Blackmond D. G.. 2007Chiral amnesia as a driving force for solid-phase homochirality. Chem. Eur. J. 13, 3290–3294.doi:10.1002/chem.200601463 (doi:10.1002/chem.200601463). Crossref, PubMed, ISIGoogle Scholar
    • 19
      Viedma C.. 2007Chiral symmetry breaking and complete chiral purity by thermodynamic-kinetic feedback near equilibrium: implications for the origin of biochirality. Astrobiology 7, 312–319.doi:10.1089/ast.2006.0099 (doi:10.1089/ast.2006.0099). Crossref, PubMed, ISIGoogle Scholar
    • 20
      Noorduin W. L., et al.2008Emergence of a single solid chiral state from a nearly racemic amino acid derivative. J. Am. Chem. Soc. 130, 1158–1159.doi:10.1021/ja7106349 (doi:10.1021/ja7106349). Crossref, PubMed, ISIGoogle Scholar
    • 21
      Viedma C., Ortiz J. E., de Torres T., Izumi T.& Blackmond D. G.. 2008Evolution of solid phase homochirality for a proteinogenic amino acid. J. Am. Chem. Soc. 130, 15 274–15 275.doi:10.1021/ja8074506 (doi:10.1021/ja8074506). Crossref, ISIGoogle Scholar
    • 22
      Klussmann M., Iwamura H., Mathew S. P., Wells D. H., Pandya U., Armstrong A.& Blackmond D. G.. 2006Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature 441, 621–623.doi:10.1038/nature04780 (doi:10.1038/nature04780). Crossref, PubMed, ISIGoogle Scholar
    • 23
      Morowitz M.. 1969A mechanism for the amplification of fluctuations in racemic mixtures. J. Theor. Biol. 25, 491–494.doi:10.1016/S0022-5193(69)80035-4 (doi:10.1016/S0022-5193(69)80035-4). Crossref, PubMed, ISIGoogle Scholar
    • 24
      Klussmann K., White A. J. P., Armstrong A.& Blackmond D. G.. 2006Rationalization and prediction of solution enantiomeric excess in ternary phase systems. Angew. Chem. Int. Ed. 47, 7985–7989.doi:10.1002/anie.200602520 (doi:10.1002/anie.200602520). Crossref, ISIGoogle Scholar
    • 25
      Breslow R.& Levine M.. 2006Amplification of enantiomeric concentrations under credible prebiotic conditions. Proc. Natl Acad. Sci. USA 103, 12 979–12 980.doi:10.1073/pnas.0605863103 (doi:10.1073/pnas.0605863103). Crossref, ISIGoogle Scholar
    • 26
      Breslow R.& Cheng L.. 2009On the origin of terrestrial homochirality for nucleosides and amino acids. Proc. Natl Acad. Sci. USA 106, 9144–9146.doi:10.1073/pnas.0904350106 (doi:10.1073/pnas.0904350106). Crossref, PubMed, ISIGoogle Scholar
    • 27
      Lombardo T. G., Stillinger F. H.& Debenedetti P. G.. 2009Thermodynamic mechanism for solution phase chiral amplification via a lattice model. Proc. Natl Acad. Sci. USA 106, 15 131–15 135.doi:10.1073/pnas.0812867106 (doi:10.1073/pnas.0812867106). Crossref, ISIGoogle Scholar
    • 28
      Klussmann M., Izumi T., White A. J. P., Armstrong A.& Blackmond D. G.. 2007Emergence of solution-phase homochirality via crystal engineering of amino acids. J. Am. Chem. Soc. 123, 7657–7660.doi:10.1021/ja0708870 (doi:10.1021/ja0708870). Crossref, ISIGoogle Scholar
    • 29
      Klussmann M.& Blackmond D. G.. 2007Investigating the evolution of biomolecular homochirality. AICHE J 53, 2–8.doi:10.1002/aic.11024 (doi:10.1002/aic.11024). Crossref, ISIGoogle Scholar
    • 30
      von Kiedrowski G.. 2005Systems chemistry seeks to understand the chemical roots of biological organization based on the classical knowledge of chemistry—the language of molecules, their structures, reactions, and interactions—combined with aspects derived from the fields of theoretical biology and complex systems research. In European Science Foundation workshop at the European Center for Living Technology, Venice International University, Venice, Italy, 3–4 October, 2005.. Google Scholar