Abstract
Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level.
Footnotes
References
- 1
Xie XS& Trautman JK . 1998 Optical studies of single molecules at room temperature. Annu. Rev. Phys. Chem. 49, 441–480.doi:10.1146/annurev.physchem.49.1.441 (doi:10.1146/annurev.physchem.49.1.441). Crossref, PubMed, Web of Science, Google Scholar - 2
Moerner WE& Orrit M . 1999 Illuminating single molecules in condensed matter. Science 283, 1670–1675.doi:10.1126/science.283.5408.1670 (doi:10.1126/science.283.5408.1670). Crossref, PubMed, Web of Science, Google Scholar - 3
Weiss S . 1999 Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683.doi:10.1126/science.283.5408.1676 (doi:10.1126/science.283.5408.1676). Crossref, PubMed, Web of Science, Google Scholar - 4
Hinterdorfer P& van Oijen AM (eds) 2009 Handbook of single-molecule biophysics. New York, NY: Springer. Crossref, Google Scholar - 5
Yanagida T& Ishii Y (eds) 2009 Single-molecule dynamics in life science. Weinheim, Germany: Wiley-VCH. Google Scholar - 6
Gräslund A& Widengren J (eds) 2009 Single molecule spectroscopy in chemistry, physics and biology. Nobel Symposium. Berlin, Germany: Springer. Google Scholar - 7
Claridge SA, Schwartz JJ& Weiss PS . 2011 Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. ACS Nano 5, 693–729.doi:10.1021/nn103298x (doi:10.1021/nn103298x). Crossref, PubMed, Web of Science, Google Scholar - 8
Moerner WE& Fromm DP . 2003 Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619.doi:10.1063/1.1589587 (doi:10.1063/1.1589587). Crossref, Web of Science, Google Scholar - 9
Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Millaud JE& Weiss S . 2007 Detectors for single-molecule fluorescence imaging and spectroscopy. J. Mod. Opt. 54, 239–282.doi:10.1080/09500340600769067 (doi:10.1080/09500340600769067). Crossref, PubMed, Web of Science, Google Scholar - 10
Betzig E . 1995 Proposed method for molecular optical imaging. Opt. Lett. 20, 237–239.doi:10.1364/OL.20.000237 (doi:10.1364/OL.20.000237). Crossref, PubMed, Web of Science, Google Scholar - 11
Trautman JK& Macklin JJ . 1996 Time-resolved spectroscopy of single molecules using near-field and far-field optics. Chem. Phys. 205, 221–229.doi:10.1016/0301-0104(95)00391-6 (doi:10.1016/0301-0104(95)00391-6). Crossref, Web of Science, Google Scholar - 12
Ha T, Chemla DS, Enderle T& Weiss S . 1997 Single molecule spectroscopy with automated positioning. Appl. Phys. Lett. 70, 782–784.doi:10.1063/1.118259 (doi:10.1063/1.118259). Crossref, Web of Science, Google Scholar - 13
Pawley JB (ed). 1995 Handbook of biological confocal microscopy, 2nd edn. New York, NY: Plenum Press. Crossref, Google Scholar - 14
Betzig E& Trautman JK . 1992 Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195.doi:10.1126/science.257.5067.189 (doi:10.1126/science.257.5067.189). Crossref, PubMed, Web of Science, Google Scholar - 15
Kasper R, Harke B, Forthmann C, Tinnefeld P, Hell SW& Sauer M . 2010 Single-molecule STED microscopy with photostable organic fluorophores. Small 6, 1379–1384.doi:10.1002/smll.201000203 (doi:10.1002/smll.201000203). Crossref, PubMed, Web of Science, Google Scholar - 16
Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG& Webb WW . 2003 Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686.doi:10.1126/science.1079700 (doi:10.1126/science.1079700). Crossref, PubMed, Web of Science, Google Scholar - 17
Selvin PR& Ha T (eds) 2007 Single-molecule techniques: a laboratory manual, 1st edn. Cold Spring Harbour, NY: Cold Spring Harbor Laboratory Press. Google Scholar - 18
Fries JR, Brand L, Eggeling C, Kollner M& Seidel CAM . 1998 Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy. J. Phys. Chem. A 102, 6601–6613.doi:10.1021/jp980965t (doi:10.1021/jp980965t). Crossref, Web of Science, Google Scholar - 19
Antonik M, Felekyan S, Gaiduk A& Seidel CAM . 2006 Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J. Phys. Chem. B 110, 6970–6978.doi:10.1021/jp057257 (doi:10.1021/jp057257). Crossref, PubMed, Web of Science, Google Scholar - 20
Nir E, Michalet X, Hamadani KM, Laurence TA, Neuhauser D, Kovchegov Y& Weiss S . 2006 Shot-noise limited single-molecule FRET histograms: Comparison between theory and experiments. J. Phys. Chem. B 110, 22103–22124.doi:10.1021/jp063483n (doi:10.1021/jp063483n). Crossref, PubMed, Web of Science, Google Scholar - 21
Becker W . 2005 Advanced time-correlated single photon couting techniques. Berlin, Germany: Springer. Crossref, Google Scholar - 22
Stryer L& Haugland RP . 1967 Energy transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. USA 58, 719–726.doi:10.1073/pnas.58.2.719 (doi:10.1073/pnas.58.2.719). Crossref, PubMed, Web of Science, Google Scholar - 23
Weiss S . 2000 Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat. Struct. Biol. 7, 724–729.doi:10.1038/78941 (doi:10.1038/78941). Crossref, PubMed, Google Scholar - 24
Michalet X, Weiss S& Jäger M . 2006 Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem. Rev. 106, 1785–1813.doi:10.1021/cr0404343 (doi:10.1021/cr0404343). Crossref, PubMed, Web of Science, Google Scholar - 25
Förster T . 2012 Energy migration and fluorescence. J. Biomed. Opt. 17, 011002.doi:10.1117/1.JBO.17.1.011002 (doi:10.1117/1.JBO.17.1.011002). Crossref, PubMed, Web of Science, Google Scholar - 26
Lakowicz JR . 1999 Principles of fluorescence spectroscopy, 2nd edn. New York, NY: Plenum. Crossref, Google Scholar - 27
Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR& Weiss S . 1996 Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl Acad. Sci. USA 93, 6264–6268.doi:10.1073/pnas.93.13.6264 (doi:10.1073/pnas.93.13.6264). Crossref, PubMed, Web of Science, Google Scholar - 28
Deniz AA, Dahan M, Grunwell JR, Ha T, Faulhaber AE, Chemla DS, Weiss S& Schultz PG . 1999 Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. Proc. Natl Acad. Sci. USA 96, 3670–3675.doi:10.1073/pnas.96.7.3670 (doi:10.1073/pnas.96.7.3670). Crossref, PubMed, Web of Science, Google Scholar - 29
Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH& Weiss S . 2005 Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88, 2939–2953.doi:10.1529/biophysj.104.054114 (doi:10.1529/biophysj.104.054114). Crossref, PubMed, Web of Science, Google Scholar - 30
Sisamakis E, Valeri A, Kalinin S, Rothwell PJ& Seidel CAM . 2010 Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods in enzymology, vol. 475. Single molecule tools, Pt B: super-resolution, particle tracking, multiparameter, and force based methods (ed.& Walter NG ), pp. 455–514. San Diego, CA: Academic Press. Google Scholar - 31
Eggeling C, Berger S, Brand L, Fries JR, Schaffer J, Volkmer A& Seidel CAM . 2001 Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J. Biotechnol. 86, 163–180.doi:10.1016/S0168-1656(00)00412-0 (doi:10.1016/S0168-1656(00)00412-0). Crossref, PubMed, Web of Science, Google Scholar - 32
Widengren J, Kudryavtsev V, Antonik M, Berger S, Gerken M& Seidel CAM . 2006 Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Anal. Chem. 78, 2039–2050.doi:10.1021/ac0522759 (doi:10.1021/ac0522759). Crossref, PubMed, Web of Science, Google Scholar - 33
Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E& Weiss S . 2004 Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc. Natl Acad. Sci. USA 101, 8936–8941.doi:10.1073/pnas.0401690101 (doi:10.1073/pnas.0401690101). Crossref, PubMed, Web of Science, Google Scholar - 34
Laurence TA, Kong XX, Jager M& Weiss S . 2005 Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proc. Natl Acad. Sci. USA 102, 17 348–17 353.doi:10.1073/pnas.0508584102 (doi:10.1073/pnas.0508584102). Crossref, Web of Science, Google Scholar - 35
Muller BK, Zaychikov E, Brauchle C& Lamb DC . 2005 Pulsed interleaved excitation. Biophys. J. 89, 3508–3522.doi:10.1529/biophysj.105.064766 (doi:10.1529/biophysj.105.064766). Crossref, PubMed, Web of Science, Google Scholar - 36
Kudryavtsev V, Sikor M, Kalinin S, Mokranjac D, Seidel CAM& Lamb DC . 2012 Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. Chem. Phys. Phys. Chem. 13, 1060–1078.doi:10.1002/cphc.201100822 (doi:10.1002/cphc.201100822). Crossref, Web of Science, Google Scholar - 37
Tomov TE, Tsukanov R, Masoud R, Liber M, Plavner N& Nir E . 2012 Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis. Biophys. J. 102, 1163–1173.doi:10.1016/j.bpj.2011.11.4025 (doi:10.1016/j.bpj.2011.11.4025). Crossref, PubMed, Web of Science, Google Scholar - 38
Neubauer H, 2007 Orientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy. J. Am. Chem. Soc. 129, 12746–12755.doi:10.1021/ja0722574 (doi:10.1021/ja0722574). Crossref, PubMed, Web of Science, Google Scholar - 39
Kalinin S, Sisamakis E, Magennis SW, Felekyan S& Seidel CAM . 2010 On the origin of broadening of single-molecule fret efficiency distributions beyond shot noise limits. J. Phys. Chem. B 114, 6197–6206.doi:10.1021/jp100025v (doi:10.1021/jp100025v). Crossref, PubMed, Web of Science, Google Scholar - 40
Sindbert S, Kalinin S, Hien N, Kienzler A, Clima L, Bannwarth W, Appel B, Müller S& Seidel CAM . 2011 Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. J. Am. Chem. Soc. 133, 2463–2480.doi:10.1021/ja105725e (doi:10.1021/ja105725e). Crossref, PubMed, Web of Science, Google Scholar - 41
Lee NK, Kapanidis AN, Koh HR, Korlann Y, Ho SO, Kim Y, Gassman N, Kim SK& Weiss S . 2007 Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophys. J. 92, 303–312.doi:10.1529/biophysj.106.093211 (doi:10.1529/biophysj.106.093211). Crossref, PubMed, Web of Science, Google Scholar - 42
Yim SW, Kim T, Laurence TA, Partono S, Kim DS, Kim Y, Kim Y, Weiss S& Reitmair A . 2012 Four-color alternating-laser excitation single-molecule fluorescence spectroscopy for next-generation biodetection assays. Clin. Chem. 58, 707–716.doi:10.1373/clinchem.2011.176958 (doi:10.1373/clinchem.2011.176958). Crossref, PubMed, Web of Science, Google Scholar - 43
Kapanidis AN, Laurence TA, Lee NK, Margeat E, Kong XX& Weiss S . 2005 Alternating-laser excitation of single molecules. Acc. Chem. Res. 38, 523–533.doi:10.1021/ar0401348 (doi:10.1021/ar0401348). Crossref, PubMed, Web of Science, Google Scholar - 44
Elson EL& Magde D . 1974 Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27.doi:10.1002/bip.1974.360130102 (doi:10.1002/bip.1974.360130102). Crossref, Web of Science, Google Scholar - 45
Krichevsky O& Bonnet G . 2002 Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys. 65, 251–297.doi:10.1088/0034-4885/65/2/203 (doi:10.1088/0034-4885/65/2/203). Crossref, Web of Science, Google Scholar - 46
Orrit M . 2002 Photon statistics in single molecule experiments. Single Molecules 3, 255–265.doi:10.1002/1438-5171(200211)3:5/6<255::AID-SIMO255>3.0.CO;2-8 (doi:10.1002/1438-5171(200211)3:5/6<255::AID-SIMO255>3.0.CO;2-8). Crossref, Google Scholar - 47
Hess ST& Webb WW . 2002 Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J. 83, 2300–2317.doi:10.1016/S0006-3495(02)73990-8 (doi:10.1016/S0006-3495(02)73990-8). Crossref, PubMed, Web of Science, Google Scholar - 48
Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I& Enderlein J . 2007 Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chem. Phys. Phys. Chem. 8, 433–443.doi:10.1002/cphc.200600638 (doi:10.1002/cphc.200600638). Crossref, Web of Science, Google Scholar - 49
Schwille P, Meyer-Almes FJ& Rigler R . 1997 Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72, 1878–1886.doi:10.1016/S0006-3495(97)78833-7 (doi:10.1016/S0006-3495(97)78833-7). Crossref, PubMed, Web of Science, Google Scholar - 50
Kask P, Palo K, Ullmann D& Gall K . 1999 Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc. Natl Acad. Sci. USA 96, 13 756–13 761.doi:10.1073/pnas.96.24.13756 (doi:10.1073/pnas.96.24.13756). Crossref, Web of Science, Google Scholar - 51
Palo K, Metz U, Jager S, Kask P& Gall K . 2000 Fluorescence intensity multiple distributions analysis: concurrent determination of diffusion times and molecular brightness. Biophys. J. 79, 2858–2866.doi:10.1016/S0006-3495(00)76523-4 (doi:10.1016/S0006-3495(00)76523-4). Crossref, PubMed, Web of Science, Google Scholar - 52
Laurence TA, Kapanidis AN, Kong XX, Chemla DS& Weiss S . 2004 Photon arrival-time interval distribution (PAID): a novel tool for analyzing molecular interactions. J. Phys. Chem. B 108, 3051–3067.doi:10.1021/jp036499b (doi:10.1021/jp036499b). Crossref, Web of Science, Google Scholar - 53
Qian H . 1990 On the statistics of fluorescence correlation spectroscopy. Biophys. Chem. 38, 49–57.doi:10.1016/0301-4622(90)80039-A (doi:10.1016/0301-4622(90)80039-A). Crossref, PubMed, Web of Science, Google Scholar - 54
Kask P, Günther R& Axhausen P . 1997 Statistical accuracy in fluorescence fluctuation experiments. Eur. Biophys. J. 25, 163–169.doi:10.1007/s002490050028 (doi:10.1007/s002490050028). Crossref, Web of Science, Google Scholar - 55
Wohland T, Rigler R& Vogel H . 2001 The standard deviation in fluorescence correlation spectroscopy. Biophys. J. 80, 2987–2999.doi:10.1016/S0006-3495(01)76264-9 (doi:10.1016/S0006-3495(01)76264-9). Crossref, PubMed, Web of Science, Google Scholar - 56
Saffarian S& Elson EL . 2003 Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias. Biophys. J. 84, 2030–2042.doi:10.1016/S0006-3495(03)75011-5 (doi:10.1016/S0006-3495(03)75011-5). Crossref, PubMed, Web of Science, Google Scholar - 57
Michalet X, 2010 High-throughput single-molecule fluorescence spectroscopy using parallel detection. Proc. SPIE 7608, 76082D.doi:10.1117/12.846784 (doi:10.1117/12.846784). Crossref, PubMed, Google Scholar - 58
Orrit M& Bernard J . 1990 Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719.doi:10.1103/PhysRevLett.65.2716 (doi:10.1103/PhysRevLett.65.2716). Crossref, PubMed, Web of Science, Google Scholar - 59
Shera EB, Seitzinger NK, Davis LM, Keller RA& Soper SA . 1990 Detection of single fluorescent molecules. Chem. Phys. Lett. 174, 553–557.doi:10.1016/0009-2614(90)85485-U (doi:10.1016/0009-2614(90)85485-U). Crossref, Web of Science, Google Scholar - 60
Robinson DL& Metscher BD . 1987 Photon detection with cooled avalanche photodiodes. Appl. Phys. Lett. 51, 1493–1494.doi:10.1063/1.98665 (doi:10.1063/1.98665). Crossref, Web of Science, Google Scholar - 61
Li LQ& Davis LM . 1993 Single-photon avalanche-diode for single-molecule detection. Rev. Sci. Instrum. 64, 1524–1529.doi:10.1063/1.1144463 (doi:10.1063/1.1144463). Crossref, Web of Science, Google Scholar - 62
Betzig E& Chichester RJ . 1993 Single molecules observed by near-field scanning optical microscopy. Science 262, 1422–1425.doi:10.1126/science.262.5138.1422 (doi:10.1126/science.262.5138.1422). Crossref, PubMed, Web of Science, Google Scholar - 63
Spinelli A, Davis LM& Dautet H . 1996 Actively quenched single-photon avalanche diode for high repetition rate time-gated photon counting. Rev. Sci. Instrum. 67, 55–61.doi:10.1063/1.1146551 (doi:10.1063/1.1146551). Crossref, Web of Science, Google Scholar - 64
Rigler R& Mets U . 1992 Diffusion of single molecules through a Gaussian laser beam. Proc. SPIE 1921, 239–248.doi:10.1117/12.146154 (doi:10.1117/12.146154). Crossref, Google Scholar - 65
Rigler R, Mets U, Widengren J& Kask P . 1993 Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur. Biophys. J. 22, 169–175.doi:10.1007/BF00185777 (doi:10.1007/BF00185777). Crossref, Web of Science, Google Scholar - 66
Felekyan S, Kuhnemuth R, Kudryavtsev V, Sandhagen C, Becker W& Seidel CAM . 2005 Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum. 76, 083104.doi:10.1063/1.1946088 (doi:10.1063/1.1946088). Crossref, Web of Science, Google Scholar - 67
Michalet X, Cheng A, Antelman J, Suyama M, Arisaka K& Weiss S . 2008 Hybrid photodetector for single-molecule spectroscopy and microscopy. Proc. SPIE 6862, 68620F.doi:10.1117/12.763449 (doi:10.1117/12.763449). Crossref, PubMed, Google Scholar - 68
Rech I, Luo GB, Ghioni M, Yang H, Xie XLS& Cova S . 2004 Photon-timing detector module for single-molecule spectroscopy with 60-ps resolution. IEEE J. Sel. Top. Quantum Electron. 10, 788–795.doi:10.1109/JSTQE.2004.833975 (doi:10.1109/JSTQE.2004.833975). Crossref, Web of Science, Google Scholar - 69
Cova S, Ghioni M, Lotito A, Rech I& Zappa F . 2004 Evolution and prospects for single-photon avalanche diode and quenching circuits. J. Mod. Opt. 51, 1267–1288.doi:10.1080/09500340408235272 (doi:10.1080/09500340408235272). Crossref, Web of Science, Google Scholar - 70
Yang H, Luo GB, Karnchanaphanurach P, Louie TM, Rech I, Cova S, Xun L& Xie XS . 2003 Protein conformational dynamics probed by single-molecule electron transfer. Science 302, 262–266.doi:10.1126/science.1086911 (doi:10.1126/science.1086911). Crossref, PubMed, Web of Science, Google Scholar - 71
Kell G, Bülter A, Wahl M& Erdmann M . 2011 τ-SPAD: a new red sensitive single-photon counting module. Proc. SPIE 8033, 803303.doi:10.1117/12.884754 (doi:10.1117/12.884754). Crossref, Google Scholar - 72
Ghioni M, Gulinatti A, Rech I, Zappa F& Cova S . 2007 Progress in silicon single-photon avalanche diodes. IEEE J. Sel. Top. Quantum Electron. 13, 852–862.doi:10.1109/JSTQE.2007.902088 (doi:10.1109/JSTQE.2007.902088). Crossref, Web of Science, Google Scholar - 73
Assanelli M, Ingargiola A, Rech I, Gulinatti A& Ghioni M . 2011 Photon-timing jitter dependence on injection position in single-photon avalanche diodes. IEEE J. Quantum Electron. 47, 151–159.doi:10.1109/JQE.2010.2068038 (doi:10.1109/JQE.2010.2068038). Crossref, Web of Science, Google Scholar - 74
Gulinatti A, Rech I, Maccagnani P, Ghioni M& Cova S . 2011 Improving the performance of silicon single photon avalanche diodes. Proc. SPIE 8033, 803302.doi:10.1117/12.883863 (doi:10.1117/12.883863). Crossref, Google Scholar - 75
Fukusawa A, Kamiya A, Muramatsu S, Negi Y& Suyama M . 2011 High performance HPD for photon counting. Proc. SPIE 8033, 80330S.doi:10.1117/12.883605 (doi:10.1117/12.883605). Crossref, Google Scholar - 76
Anzivino G, 1995 Review of the hybrid photo diode tube (HPD) an advanced light detector for physics. Nucl. Instrum. Methods Phys. Res. A 365, 76–82.doi:10.1016/0168-9002(95)00486-6 (doi:10.1016/0168-9002(95)00486-6). Crossref, Web of Science, Google Scholar - 77
Gopich IV& Szabo A . 2007 Single-molecule FRET with diffusion and conformational dynamics. J. Phys. Chem. B 111, 12925–12932.doi:10.1021/jp075255e (doi:10.1021/jp075255e). Crossref, PubMed, Web of Science, Google Scholar - 78
Kapanidis AN, 2005 Retention of transcription initiation factor sigma(70) in transcription elongation: single-molecule analysis. Mol. Cell 20, 347–356.doi:10.1016/j.molcel.2005.10.012 (doi:10.1016/j.molcel.2005.10.012). Crossref, PubMed, Web of Science, Google Scholar - 79
Margittai M, 2003 Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proc. Natl Acad. Sci. USA 100, 15516–15521.doi:10.1073/pnas.2331232100 (doi:10.1073/pnas.2331232100). Crossref, PubMed, Web of Science, Google Scholar - 80
Enderlein J . 2000 Tracking of fluorescent molecules diffusing within membranes. Appl. Phys. B 71, 773–777.doi:10.1007/s003400000409 (doi:10.1007/s003400000409). Crossref, Web of Science, Google Scholar - 81
Berglund AJ& Mabuchi H . 2005 Tracking-FCS: fluorescence correlation spectroscopy of individual particles. Opt. Express 13, 8069–8082.doi:10.1364/OPEX.13.008069 (doi:10.1364/OPEX.13.008069). Crossref, PubMed, Web of Science, Google Scholar - 82
Cohen AE& Moerner WE . 2008 Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer. Opt. Express 16, 6941–6956.doi:10.1364/OE.16.006941 (doi:10.1364/OE.16.006941). Crossref, PubMed, Web of Science, Google Scholar - 83
Funatsu T, Harada Y, Tokunaga M, Saito K& Yanagida T . 1995 Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559.doi:10.1038/374555a0 (doi:10.1038/374555a0). Crossref, PubMed, Web of Science, Google Scholar - 84
Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM& Chu S . 2002 Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641.doi:10.1038/nature01083 (doi:10.1038/nature01083). Crossref, PubMed, Web of Science, Google Scholar - 85
Margeat E, Kapanidis AN, Tinnefeld P, Wang Y, Mukhopadhyay J, Ebright RH& Weiss S . 2006 Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophys. J. 90, 1419–1431.doi:10.1529/biophysj.105.069252 (doi:10.1529/biophysj.105.069252). Crossref, PubMed, Web of Science, Google Scholar - 86
Schmidt T, Schütz GJ, Baumgartner W, Gruber HJ& Schindler H . 1996 Imaging of single molecule diffusion. Proc. Natl Acad. Sci. USA 93, 2926–2929.doi:10.1073/pnas.93.7.2926 (doi:10.1073/pnas.93.7.2926). Crossref, PubMed, Web of Science, Google Scholar - 87
Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B& Triller A . 2003 Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445.doi:10.1126/science.1088525 (doi:10.1126/science.1088525). Crossref, PubMed, Web of Science, Google Scholar - 88
Ram S, Prabhat P, Chao J, Ward ES& Ober RJ . 2008 High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophys. J. 95, 6025–6043.doi:10.1529/biophysj.108.140392 (doi:10.1529/biophysj.108.140392). Crossref, PubMed, Web of Science, Google Scholar - 89
Pinaud F, Clarke S, Sittner A& Dahan M . 2010 Probing cellular events, one quantum dot at a time. Nat. Methods 7, 275–285.doi:10.1038/nmeth.1444 (doi:10.1038/nmeth.1444). Crossref, PubMed, Web of Science, Google Scholar - 90
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J& Hess HF . 2006 Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645.doi:10.1126/science.1127344 (doi:10.1126/science.1127344). Crossref, PubMed, Web of Science, Google Scholar - 91
Hess ST, Girirajan TPK& Mason MD . 2006 Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272.doi:10.1529/biophysj.106.091116 (doi:10.1529/biophysj.106.091116). Crossref, PubMed, Web of Science, Google Scholar - 92
Huang B, Jones SA, Brandenburg B& Zhuang X . 2008 Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5, 1047–1052.doi:10.1038/nmeth.1274 (doi:10.1038/nmeth.1274). Crossref, PubMed, Web of Science, Google Scholar - 93
Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E& Lippincott-Schwartz J . 2008 High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157.doi:10.1038/nmeth.1176 (doi:10.1038/nmeth.1176). Crossref, PubMed, Web of Science, Google Scholar - 94
Axelrod D . 2001 Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774.doi:10.1034/j.1600-0854.2001.21104.x (doi:10.1034/j.1600-0854.2001.21104.x). Crossref, PubMed, Web of Science, Google Scholar - 95
Inoue S& Spring KR . 1997 Video microscopy. The fundamentals, 2nd edn. New York, NY: Plenum Press. Crossref, Google Scholar - 96
- 97
Bewersdorf J, Pick R& Hell SW . 1998 Multifocal multiphoton microscopy. Opt. Lett. 23, 655–657.doi:10.1364/OL.23.000655 (doi:10.1364/OL.23.000655). Crossref, PubMed, Web of Science, Google Scholar - 98
Sheppard CJR& Mao XQ . 1988 Confocal microscopes with slit apertures. J. Mod. Opt. 35, 1169–1185.doi:10.1080/09500348814551251 (doi:10.1080/09500348814551251). Crossref, Web of Science, Google Scholar - 99
Wang E, Babbey CM& Dunn KW . 2005 Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J. Microsc. 218, 148–159.doi:10.1111/j.1365-2818.2005.01473.x (doi:10.1111/j.1365-2818.2005.01473.x). Crossref, PubMed, Web of Science, Google Scholar - 100
Heintzmann R, Hanley QS, Arndt-Jovin D& Jovin TM . 2001 A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images. J. Microsc. 204, 119–135.doi:10.1046/j.1365-2818.2001.00945.x (doi:10.1046/j.1365-2818.2001.00945.x). Crossref, PubMed, Web of Science, Google Scholar - 101
Caarls W, Rieger B, De Vries AHB, Arndt-Jovin DJ& Jovin TM . 2011 Minimizing light exposure with the programmable array microscope. J. Microsc. 241, 101–110.doi:10.1111/j.1365-2818.2010.03413.x (doi:10.1111/j.1365-2818.2010.03413.x). Crossref, PubMed, Web of Science, Google Scholar - 102
Huisken J, Swoger J, Del Bene F, Wittbrodt J& Stelzer EHK . 2004 Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009.doi:10.1126/science.1100035 (doi:10.1126/science.1100035). Crossref, PubMed, Web of Science, Google Scholar - 103
Ritter JG, Veith R, Veenendaal A, Siebrasse JP& Kubitscheck U . 2010 Light sheet microscopy for single molecule tracking in living tissue. PLoS ONE 5, e11639.doi:10.1371/journal.pone.0011639 (doi:10.1371/journal.pone.0011639). Crossref, PubMed, Web of Science, Google Scholar - 104
Neil MAA, Juskaitis R& Wilson T . 1997 Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 22, 1905–1907.doi:10.1364/OL.22.001905 (doi:10.1364/OL.22.001905). Crossref, PubMed, Web of Science, Google Scholar - 105
Gustafsson MGL . 1999 Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9, 627–634.doi:10.1016/S0959-440X(99)00016-0 (doi:10.1016/S0959-440X(99)00016-0). Crossref, PubMed, Web of Science, Google Scholar - 106
Lim D, Chu KK& Mertz J . 2008 Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Opt. Lett. 33, 1819–1821.doi:10.1364/OL.33.001819 (doi:10.1364/OL.33.001819). Crossref, PubMed, Web of Science, Google Scholar - 107
Oron D, Tal E& Silberberg Y . 2005 Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476.doi:10.1364/OPEX.13.001468 (doi:10.1364/OPEX.13.001468). Crossref, PubMed, Web of Science, Google Scholar - 108
Vaziri A& Shank CV . 2010 Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing. Opt. Express 18, 19645–19655.doi:10.1364/OE.18.019645 (doi:10.1364/OE.18.019645). Crossref, PubMed, Web of Science, Google Scholar - 109
Saxton MJ& Jacobson K . 1997 Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399.doi:10.1146/annurev.biophys.26.1.373 (doi:10.1146/annurev.biophys.26.1.373). Crossref, PubMed, Google Scholar - 110
Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK& Kusumi A . 2011 Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192, 463–480.doi:10.1083/jcb.201009128 (doi:10.1083/jcb.201009128). Crossref, PubMed, Web of Science, Google Scholar - 111
Rondelez Y, Tresset G, Tabata KV, Arata H, Fujita H, Takeuchi S& Noji H . 2005 Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat. Biotechnol. 23, 361–365.doi:10.1038/nbt1072 (doi:10.1038/nbt1072). Crossref, PubMed, Web of Science, Google Scholar - 112
Rust MJ, Bates M& Zhuang XW . 2006 Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795.doi:10.1038/nmeth929 (doi:10.1038/nmeth929). Crossref, PubMed, Web of Science, Google Scholar - 113
Hell SW . 2007 Far-field optical nanoscopy. Science 316, 1153–1158.doi:10.1126/science.1137395 (doi:10.1126/science.1137395). Crossref, PubMed, Web of Science, Google Scholar - 114
Walter NG, Huang C-Y, Manzo AJ& Sobhy MA . 2008 Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat. Methods 5, 475–489.doi:10.1038/nmeth.1215 (doi:10.1038/nmeth.1215). Crossref, PubMed, Web of Science, Google Scholar - 115
Huang B, Bates M& Zhuang XW . 2009 Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016.doi:10.1146/annurev.biochem.77.061906.092014 (doi:10.1146/annurev.biochem.77.061906.092014). Crossref, PubMed, Web of Science, Google Scholar - 116
Michalet X, Lacoste TD& Weiss S . 2001 Ultrahigh-resolution colocalization of spectrally resolvable point-like fluorescent probes. Methods 25, 87–102.doi:10.1006/meth.2001.1218 (doi:10.1006/meth.2001.1218). Crossref, PubMed, Web of Science, Google Scholar - 117
Thompson RE, Larson DR& Webb WW . 2002 Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783.doi:10.1016/S0006-3495(02)75618-X (doi:10.1016/S0006-3495(02)75618-X). Crossref, PubMed, Web of Science, Google Scholar - 118
Ram S, Ward ES& Ober RJ . 2006 Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. Proc. Natl Acad. Sci. USA 103, 4457–4462.doi:10.1073/pnas.0508047103 (doi:10.1073/pnas.0508047103). Crossref, PubMed, Web of Science, Google Scholar - 119
Mortensen KI, Churchman LS, Spudich JA& Flyvbjerg H . 2010 Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7, 377–381.doi:10.1038/nmeth.1447 (doi:10.1038/nmeth.1447). Crossref, PubMed, Web of Science, Google Scholar - 120
Zhou RB, Schlierf M& Ha T . 2010 Force fluorescence spectroscopy at the single-molecule level. Methods in enzymology, vol. 475: single molecule tools, Pt B: super-resolution, particle tracking, multiparameter, and force based methods (ed.& Walter NG ), pp. 405–426. San Diego, CA: Elsevier Academic Press Inc. Google Scholar - 121
Gross P, Farge G, Peterman EJG& Wuite GJL . 2010 Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA–protein interactions. Methods in enzymology, vol. 475: single molecule tools, Pt B: super-resolution, particle tracking, multiparameter, and force based methods (ed.& Walter NG ), pp. 427–453. San Diego, CA: Elsevier Academic Press Inc. Google Scholar - 122
Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR& Gratton E . 2005 Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J. 89, 1317–1327.doi:10.1529/biophysj.105.062836 (doi:10.1529/biophysj.105.062836). Crossref, PubMed, Web of Science, Google Scholar - 123
Kolin DL, Ronis D& Wiseman PW . 2006 k-Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics. Biophys. J. 91, 3061–3075.doi:10.1529/biophysj.106.082768 (doi:10.1529/biophysj.106.082768). Crossref, PubMed, Web of Science, Google Scholar - 124
Kolin DL& Wiseman PW . 2007 Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem. Biophys. 49, 141–164.doi:10.1007/s12013-007-9000-5 (doi:10.1007/s12013-007-9000-5). Crossref, PubMed, Web of Science, Google Scholar - 125
Dertinger T, Colyer R, Iyer G, Weiss S& Enderlein J . 2009 Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22 287–22 292.doi:10.1073/pnas.0907866106 (doi:10.1073/pnas.0907866106). Crossref, Web of Science, Google Scholar - 126
Dertinger T, Colyer R, Vogel R, Enderlein J& Weiss S . 2010 Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Opt. Express 18, 18 875–18 885.doi:10.1364/OE.18.018875 (doi:10.1364/OE.18.018875). Crossref, Web of Science, Google Scholar - 127
Semrau S, Holtzer L, Gonzalez-Gaitan M& Schmidt T . 2011 Quantification of biological interactions with particle image cross-correlation spectroscopy (PICCS). Biophys. J. 100, 1810–1818.doi:10.1016/j.bpj.2010.12.3746 (doi:10.1016/j.bpj.2010.12.3746). Crossref, PubMed, Web of Science, Google Scholar - 128
Kolin DL, Costantino S& Wiseman PW . 2006 Sampling effects, noise, and photobleaching in temporal image correlation spectroscopy. Biophys. J. 90, 628–639.doi:10.1529/biophysj.105.072322 (doi:10.1529/biophysj.105.072322). Crossref, PubMed, Web of Science, Google Scholar - 129
Frenkel A, Sartor MA& Wlodawski MS . 1997 Photon-noise-limited operation of intensified CCD cameras. Appl. Opt. 36, 5288–5297.doi:10.1364/AO.36.005288 (doi:10.1364/AO.36.005288). Crossref, PubMed, Web of Science, Google Scholar - 130
Ohnuki T, Michalet X, Tripathi A, Weiss S& Arisaka K . 2006 Development of an ultra-fast single-photon counting imager for single-molecule imaging. Proc. SPIE 6092, 168–176.doi:10.1117/12.658191 (doi:10.1117/12.658191). Crossref, Google Scholar - 131
Buontempo S, 1998 The megapixel EBCCD: a high-resolution imaging tube sensitive to single photons. Nucl. Instrum. Methods Phys. Res. A 413, 255–262.doi:10.1016/S0168-9002(98)00502-6 (doi:10.1016/S0168-9002(98)00502-6). Crossref, Web of Science, Google Scholar - 132
Koyama-Honda I, Ritchie K, Fujiwara T, Iino R, Murakoshi H, Kasai RS& Kusumi A . 2005 Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys. J. 88, 2126–2136.doi:10.1529/biophysj.104.048967 (doi:10.1529/biophysj.104.048967). Crossref, PubMed, Web of Science, Google Scholar - 133
Robbins MS& Hawden BJ . 2003 The noise performance of electron multiplying charge-coupled devices. IEEE Transact. Electron Devices 50, 1227–1232.doi:10.1109/TED.2003.813462 (doi:10.1109/TED.2003.813462). Crossref, Web of Science, Google Scholar - 134
Long F, Zeng S& Huang Z-L . 2012 Localization-based super-resolution microscopy with an sCMOS camera. II. Experimental methodology for comparing sCMOS with EMCCD cameras. Opt. Express 20, 17 741–17 759.doi:10.1364/OE.20.017741 (doi:10.1364/OE.20.017741). Crossref, Web of Science, Google Scholar - 135
Michalet X& Berglund AJ . 2012 Optimal diffusion coefficient estimation in single-particle tracking. Phys. Rev. E 85, 061916.doi:10.1103/PhysRevE.85.061916 (doi:10.1103/PhysRevE.85.061916). Crossref, Web of Science, Google Scholar - 136
Basden AG, Haniff CA& Mackay CD . 2003 Photon counting strategies with low-light-level CCDs. Mon. Not. R. Astronom. Soc. 345, 985–991.doi:10.1046/j.1365-8711.2003.07020.x (doi:10.1046/j.1365-8711.2003.07020.x). Crossref, Web of Science, Google Scholar - 137
Dowling K, Hyde SCW, Dainty JC, French PMW& Hares JD . 1997 2-D fluorescence lifetime imaging using a time-gated image intensifier. Opt. Commun. 135, 27–31.doi:10.1016/S0030-4018(96)00618-9 (doi:10.1016/S0030-4018(96)00618-9). Crossref, Web of Science, Google Scholar - 138
Jameson DM, Gratton E& Hall RD . 1984 The measurement and analysis of heterogeneous emissions of multifrequency phase and modulation fluorometry. Appl. Spectrosc. Rev. 20, 55–106.doi:10.1080/05704928408081716 (doi:10.1080/05704928408081716). Crossref, Web of Science, Google Scholar - 139
Colyer RA, Siegmund OHW, Tremsin AS, Vallerga JV, Weiss S& Michalet X . 2012 Phasor imaging with a widefield photon-counting detector. J. Biomed. Opt. 17, 016008.doi:10.1117/1.JBO.17.1.016008 (doi:10.1117/1.JBO.17.1.016008). Crossref, PubMed, Web of Science, Google Scholar - 140
Fittinghoff DN, Wiseman PW& Squier JA . 2000 Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy. Opt. Express 7, 273–279.doi:10.1364/OE.7.000273 (doi:10.1364/OE.7.000273). Crossref, PubMed, Web of Science, Google Scholar - 141
Gösch M, 2005 Parallel dual-color fluorescence cross-correlation spectroscopy using diffractive optical elements. J. Biomed. Opt. 10, 054008.doi:10.1117/1.2080707 (doi:10.1117/1.2080707). Crossref, PubMed, Web of Science, Google Scholar - 142
Colyer RA, Scalia G, Rech I, Gulinatti A, Ghioni M, Cova S, Weiss S& Michalet X . 2010 High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array. Biomed. Opt. Express 1, 1408–1431.doi:10.1364/BOE.1.001408 (doi:10.1364/BOE.1.001408). Crossref, PubMed, Web of Science, Google Scholar - 143
Colyer RA, Scalia G, Villa FA, Guerrieri F, Tisa S, Zappa F, Cova S, Weiss S& Michalet X . 2011 Ultrahigh-throughput single-molecule spectroscopy with a 1024 SPAD. Proc. SPIE 7905, 790503.doi:10.1117/12.874238 (doi:10.1117/12.874238). Crossref, Google Scholar - 144
Muller CB, Loman A, Pacheco V, Koberling F, Willbold D, Richtering W& Enderlein J . 2008 Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy. Europhys. Lett. 83, 46001.doi:10.1209/0295-5075/83/46001 (doi:10.1209/0295-5075/83/46001). Crossref, Google Scholar - 145
Cheng A, Goncalves JT, Golshani P, Arisaka K& Portera-Cailliau C . 2011 Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods 8, 139–142.doi:10.1038/nmeth.1552 (doi:10.1038/nmeth.1552). Crossref, PubMed, Web of Science, Google Scholar - 146
Burkhardt M& Schwille P . 2006 Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy. Opt. Express 14, 5013–5020.doi:10.1364/OE.14.005013 (doi:10.1364/OE.14.005013). Crossref, PubMed, Web of Science, Google Scholar - 147
Donati S, Martini G& Norgia M . 2007 Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits. Opt. Express 15, 18 066–18 075. Crossref, Web of Science, Google Scholar - 148
Donati S, Martini G& Randone E . 2011 Improving photodetector performance by means of microoptics concentrators. J. Lightwave Technol. 29, 661–665.doi:10.1109/JLT.2010.2103302 (doi:10.1109/JLT.2010.2103302). Crossref, Web of Science, Google Scholar - 149
Ingargiola A, 2012 Parallel multispot smFRET analysis using an 8-pixel SPAD array. Proc. SPIE 8228, 82280B.doi:10.1117/12.909470 (doi:10.1117/12.909470). Crossref, Google Scholar - 150
Tyndall D, Walker R, Nguyen K, Galland R, Jie G, Wang I, 2011 Automatic laser alignment for multifocal microscopy using a LCOS SLM and a 32×32 pixel CMOS SPAD array. Proc. SPIE 8086, 80860S.doi:10.1117/12.889738 (doi:10.1117/12.889738). Crossref, Google Scholar - 151
Buchholz J, Krieger JW, Mocsár G, Kreith B, Charbon E, Vámosi G, Kebschull U& Langowski J . 2012 FPGA implementation of a 32×32 autocorrelator array for analysis of fast image series. Opt. Express 20, 17 767–17 782. Crossref, Web of Science, Google Scholar - 152
Colyer RA, 2010 High-throughput multispot single-molecule spectroscopy. Proc. SPIE 7571, 75710G.doi:10.1117/12.841398 (doi:10.1117/12.841398). Crossref, PubMed, Google Scholar - 153
Kawai Y, Haba J& Suyama M . 2010 R&D status of 64-channel photon-counting imaging module. Nucl. Instrum. Methods Phys. Res. A 623, 282–284.doi:10.1016/j.nima.2010.02.222 (doi:10.1016/j.nima.2010.02.222). Crossref, Web of Science, Google Scholar - 154
Rech I, Marangoni S, Resnati D, Ghioni M& Cova S . 2009 Multipixel single-photon avalanche diode array for parallel photon counting applications. J. Mod. Opt. 56, 326–333.doi:10.1080/09500340802318309 (doi:10.1080/09500340802318309). Crossref, Web of Science, Google Scholar - 155
Das SK, Austin MD, Akana MC, Deshpande P, Cao H& Xiao M . 2010 Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. Nucleic Acids Res. 38, e177.doi:10.1093/nar/gkq673 (doi:10.1093/nar/gkq673). Crossref, PubMed, Web of Science, Google Scholar - 156
Kinosita K, Itoh H, Ishiwata Si, Hirano Ki, Nishizaka T& Hayakawa T . 1991 Dual-view microscopy with a single camera: real-time imaging of molecular orientations and calcium. J. Cell Biol. 115, 67–73.doi:10.1083/jcb.115.1.67 (doi:10.1083/jcb.115.1.67). Crossref, PubMed, Web of Science, Google Scholar - 157
Guerrieri F, Tisa S& Zappa F . 2009 Fast Single-Photon Imager acquires 1024 pixels at 100 kframe/s. Proc. SPIE 7249, 72490U.doi:10.1117/12.807426 (doi:10.1117/12.807426). Crossref, Google Scholar - 158
Guerrieri F, Tisa S, Tosi A& Zappa F . 2010 Two-dimensional SPAD imaging camera for photon counting. IEEE Photonics J. 2, 759–774.doi:10.1109/JPHOT.2010.2066554 (doi:10.1109/JPHOT.2010.2066554). Crossref, Web of Science, Google Scholar - 159
Rochas A, Gosch M, Serov A, Besse PA, Popovic RS, Lasser T& Rigler R . 2003 First fully integrated 2-D array of single-photon detectors in standard CMOS technology. IEEE Photonics Technol. Lett. 15, 963–965.doi:10.1109/LPT.2003.813387 (doi:10.1109/LPT.2003.813387). Crossref, Web of Science, Google Scholar - 160
Niclass C, Rochas A, Besse P-A& Charbon E . 2005 Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes. IEEE J. Solid-State Circuits 40, 1847–1854.doi:10.1109/JSSC.2005.848173 (doi:10.1109/JSSC.2005.848173). Crossref, Web of Science, Google Scholar - 161
Niclass C, Rochas A, Besse PA, Popovic R& Charbon E . 2006 A 4 μs integration time imager based on CMOS single photon avalanche diode technology. Sens. Actuators A 130, 273–281.doi:10.1016/j.sna.2006.02.031 (doi:10.1016/j.sna.2006.02.031). Crossref, Web of Science, Google Scholar - 162
Niclass C, Favi C, Kluter T, Gersbach M& Charbon E . 2008 A 128 × 128 single-photon image sensor with column-level 10-Bit Time-to-Digital Converter Array. IEEE J. Solid-State Circuits 43, 2977–2989.doi:10.1109/JSSC.2008.2006445 (doi:10.1109/JSSC.2008.2006445). Crossref, Web of Science, Google Scholar - 163
Murase K, 2004 Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 86, 4075–4093.doi:10.1529/biophysj.103.035717 (doi:10.1529/biophysj.103.035717). Crossref, PubMed, Web of Science, Google Scholar - 164
Sergent N, Levitt JA, Green M& Suhling K . 2010 Rapid wide-field photon counting imaging with microsecond time resolution. Opt. Express 18, 25 292–25 298.doi:10.1364/OE.18.025292 (doi:10.1364/OE.18.025292). Crossref, Web of Science, Google Scholar - 165
Barbier R, 2011 A single-photon sensitive ebCMOS camera: the LUSIPHER prototype. Nucl. Instrum. Methods Phys. Res. A 648, 266–274.doi:10.1016/j.nima.2011.04.018 (doi:10.1016/j.nima.2011.04.018). Crossref, Web of Science, Google Scholar - 166
Vallerga J, McPhate J, Tremsin A& Siegmund O . 2008 Optically sensitive MCP image tube with a Medipix2 ASIC readout. Proc. SPIE 7021, 702115.doi:10.1117/12.790600 (doi:10.1117/12.790600). Crossref, Google Scholar - 167
Hübner CG, Krylov V, Renn A, Nyffeler P& Wild UP . 2001 Single-molecule fluorescence - each photon counts. Single molecule spectroscopy (eds, Rigler R, Orrit M& Basche T ), pp. 161–176. Stockholm, Sweden: Springer. Google Scholar - 168
Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Millaud JE& Weiss S . 2006 Photon-counting H33D detector for biological fluorescence imaging. Nucl. Instrum. Methods Phys. Res. A 567, 133–136.doi:10.1016/j.nima.2006.05.155 (doi:10.1016/j.nima.2006.05.155). Crossref, PubMed, Web of Science, Google Scholar - 169
Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Millaud JE& Weiss S . 2006 A space- and time-resolved single-photon counting detector for fluorescence microscopy and spectroscopy. Proc. SPIE 6092, 60920M.doi:10.1117/12.646482 (doi:10.1117/12.646482). Crossref, PubMed, Google Scholar - 170
Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Pinaud FF, Millaud JE& Weiss S . 2006 Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector. Proc. SPIE 6372, 63720E.doi:10.1117/12.686429 (doi:10.1117/12.686429). Crossref, PubMed, Google Scholar - 171
Colyer R, Siegmund O, Tremsin A, Vallerga J, Weiss S& Michalet X . 2009 Phasor-based single-molecule fluorescence lifetime imaging using a widefield photon-counting detector. Proc. SPIE 7185, 71850T.doi:10.1117/12.809496 (doi:10.1117/12.809496). Crossref, PubMed, Google Scholar - 172
Michalet X, Colyer R, Siegmund O, Tremsin A, Vallerga J& Weiss S . 2009 Single-quantum dot imaging with a photon counting camera. Curr. Pharm. Biotechnol. 10, 543–557.doi:10.2174/138920109788922100 (doi:10.2174/138920109788922100). Crossref, PubMed, Web of Science, Google Scholar - 173
Tremsin AS, Siegmund OHW, Vallerga JV, Raffanti R, Weiss S& Michalet X . 2009 High speed multichannel charge sensitive data acquisition system with self-triggered event timing. IEEE Trans. Nucl. Sci. 56, 1148–1152.doi:10.1109/TNS.2009.2015302 (doi:10.1109/TNS.2009.2015302). Crossref, PubMed, Web of Science, Google Scholar - 174
Firmani C, Ruiz E, Carlson CW, Lampton M& Paresce F . 1982 High-resolution imaging with a two-dimensional resistive anode photon counter. Rev. Sci. Instrum. 53, 570–574.doi:10.1063/1.1137025 (doi:10.1063/1.1137025). Crossref, Web of Science, Google Scholar - 175
Siegmund OHW, Michalet X, Vallerga JV, Jelinsky P& Weiss S . 2005 Cross delay line detectors for high time resolution astronomical polarimetry and biological fluorescence imaging. IEEE Nucl. Symp. Conf. Rec. N14–55, 448–452.doi:10.1109/NSSMIC.2005.1596290 (doi:10.1109/NSSMIC.2005.1596290). Crossref, Google Scholar - 176
Kollner M& Wolfrum J . 1992 How many photons are necessary for fluorescence-lifetime measurements? Chem. Phys. Lett. 200, 199–204.doi:10.1016/0009-2614(92)87068-Z (doi:10.1016/0009-2614(92)87068-Z). Crossref, Web of Science, Google Scholar - 177
Colyer RA, Lee C& Gratton E . 2008 A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc. Res. Tech. 71, 201–213.doi:10.1002/jemt.20540 (doi:10.1002/jemt.20540). Crossref, PubMed, Web of Science, Google Scholar - 178
Millaud J& Nygren D . 1996 The column architecture: a novel architecture for event driven 2D pixel imagers. IEEE Trans. Nucl. Sci. 43, 1700–1706.doi:10.1109/23.507174 (doi:10.1109/23.507174). Crossref, Web of Science, Google Scholar - 179
Veerappan C, 2011 A 160×128 single-photon image sensor with on-pixel 55 ps 10b time-to-digital converter.2011 IEEE Int. Solid-State Circuits Conf. 2011 , pp. 312–314, Washington, DC: IEEE. Crossref, Google Scholar - 180
Webster EAG, Richardson JA, Grant LA, Renshaw D& Henderson RK . 2012 A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm. IEEE Electron Device Lett. 33, 694–696.doi:10.1109/LED.2012.2187420 (doi:10.1109/LED.2012.2187420). Crossref, Web of Science, Google Scholar - 181
Mandai S, Fishburn MW, Maruyama Y& Charbon E . 2012 A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology. Opt. Express 20, 5849–5857.doi:10.1364/OE.20.005849 (doi:10.1364/OE.20.005849). Crossref, PubMed, Web of Science, Google Scholar - 182
Gersbach M, Maruyama Y, Trimananda R, Fishburn MW, Stoppa D, Richardson JA, Walker R, Henderson R& Charbon E . 2012 A time-resolved, low-noise single-photon image sensor fabricated in deep-submicron CMOS technology. IEEE J. Solid-State Circuits 47, 1394–1407.doi:10.1109/JSSC.2012.2188466 (doi:10.1109/JSSC.2012.2188466). Crossref, Web of Science, Google Scholar - 183
Villa F, 2012 SPAD smart pixel for time-of-flight and time-correlated single-photon counting measurements. IEEE Photonics J. 4, 795–804.doi:10.1109/JPHOT.2012.2198459 (doi:10.1109/JPHOT.2012.2198459). Crossref, Web of Science, Google Scholar