Abstract
Humans and animals use landmarks during wayfinding to determine where they are in the world and to guide their way to their destination. To implement this strategy, known as landmark-based piloting, a navigator must be able to: (i) identify individual landmarks, (ii) use these landmarks to determine their current position and heading, (iii) access long-term knowledge about the spatial relationships between locations and (iv) use this knowledge to plan a route to their navigational goal. Here, we review neuroimaging, neuropsychological and neurophysiological data that link the first three of these abilities to specific neural systems in the human brain. This evidence suggests that the parahippocampal place area is critical for landmark recognition, the retrosplenial/medial parietal region is centrally involved in localization and orientation, and both medial temporal lobe and retrosplenial/medial parietal lobe regions support long-term spatial knowledge.
Footnotes
References
- 1
- 2
O'Keefe J& Nadel L . 1978 The hippocampus as a cognitive map, xiv, p. 570. Oxford, UK: Oxford University Press. Google Scholar - 3
Epstein R& Kanwisher N . 1998 A cortical representation of the local visual environment. Nature 392, 598–601. (doi:10.1038/33402). Crossref, PubMed, Web of Science, Google Scholar - 4
Epstein RA . 2005 The cortical basis of visual scene processing. Vis. Cogn. 12, 954–978. (doi:10.1080/13506280444000607). Crossref, Web of Science, Google Scholar - 5
Aguirre GK& D'Esposito M . 1999 Topographical disorientation: a synthesis and taxonomy. Brain 122, 1613–1628. (doi:10.1093/brain/122.9.1613). Crossref, PubMed, Web of Science, Google Scholar - 6
Habib M& Sirigu A . 1987 Pure topographical disorientation: a definition and anatomical basis. Cortex 23, 73–85. (doi:10.1016/S0010-9452(87)80020-5). Crossref, PubMed, Web of Science, Google Scholar - 7
Epstein R, Harris A, Stanley D& Kanwisher N . 1999 The parahippocampal place area: recognition, navigation, or encoding? Neuron 23, 115–125. (doi:10.1016/S0896-6273(00)80758-8). Crossref, PubMed, Web of Science, Google Scholar - 8
Wolbers T, Klatzky RL, Loomis JM, Wutte MG& Giudice NA . 2011 Modality-independent coding of spatial layout in the human brain. Curr. Biol. 21, 984–989. (doi:10.1016/j.cub.2011.04.038). Crossref, PubMed, Web of Science, Google Scholar - 9
Kravitz DJ, Peng CS& Baker CI . 2011 Real-world scene representations in high-level visual cortex: it's the spaces more than the places. J. Neurosci. 31, 7322–7333. (doi:10.1523/JNEUROSCI.4588-10.2011). Crossref, PubMed, Web of Science, Google Scholar - 10
Park S, Brady TF, Greene MR& Oliva A . 2011 Disentangling scene content from spatial boundary: complementary roles for the parahippocampal place area and lateral occipital complex in representing real-world scenes. J. Neurosci. 31, 1333–1340. (doi:10.1523/JNEUROSCI.3885-10.2011). Crossref, PubMed, Web of Science, Google Scholar - 11
Committeri G, Galati G, Paradis AL, Pizzamiglio L, Berthoz A& LeBihan D . 2004 Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. J. Cogn. Neurosci. 16, 1517–1535. (doi:10.1162/0898929042568550). Crossref, PubMed, Web of Science, Google Scholar - 12
Cheng K . 1986 A purely geometric module in the rats spatial representation. Cognition 23, 149–178. (doi:10.1016/0010-0277(86)90041-7). Crossref, PubMed, Web of Science, Google Scholar - 13
Hermer L& Spelke ES . 1994 A geometric process for spatial reorientation in young children. Nature 370, 57–59. (doi:10.1038/370057a0). Crossref, PubMed, Web of Science, Google Scholar - 14
Cant JS& Xu Y . 2012 Object ensemble processing in human anterior-medial ventral visual cortex. J. Neurosci. 32, 7685–7700. (doi:10.1523/JNEUROSCI.3325-11.2012). Crossref, PubMed, Web of Science, Google Scholar - 15
Dilks DD, Julian JB, Kubilius J, Spelke ES& Kanwisher N . 2011 Mirror-image sensitivity and invariance in object and scene processing pathways. J. Neurosci. 31, 11 305–11 312. (doi:10.1523/JNEUROSCI.1935-11.2011). Crossref, Web of Science, Google Scholar - 16
Aguirre GK, Zarahn E& D'Esposito M . 1998 An area within human ventral cortex sensitive to ‘building’ stimuli: evidence and implications. Neuron 21, 373–383. (doi:10.1016/S0896-6273(00)80546-2). Crossref, PubMed, Web of Science, Google Scholar - 17
Konkle T& Oliva A . 2012 A real-world size organization of object responses in occipitotemporal cortex. Neuron 74, 1114–1124. (doi:10.1016/j.neuron.2012.04.036). Crossref, PubMed, Web of Science, Google Scholar - 18
Cate AD, Goodale MA& Kohler S . 2011 The role of apparent size in building- and object-specific regions of ventral visual cortex. Brain Res. 1388, 109–122. (doi:10.1016/j.brainres.2011.02.022). Crossref, PubMed, Web of Science, Google Scholar - 19
Amit E, Mehoudar E, Trope Y& Yovel G . 2012 Do object-category selective regions in the ventral visual stream represent perceived distance information? Brain Cogn. 80, 201–213. (doi:10.1016/j.bandc.2012.06.006). Crossref, PubMed, Web of Science, Google Scholar - 20
Bar M& Aminoff E . 2003 Cortical analysis of visual context. Neuron 38, 347–358. (doi:10.1016/S0896-6273(03)00167-3). Crossref, PubMed, Web of Science, Google Scholar - 21
Mullally SL& Maguire EA . 2011 A new role for the parahippocampal cortex in representing space. J. Neurosci. 31, 7441–7449. (doi:10.1523/Jneurosci.0267-11.2011). Crossref, PubMed, Web of Science, Google Scholar - 22
Troiani V, Stigliani A, Smith ME& Epstein RA . 2012 Multiple object properties drive scene-selective regions. Cereb. Cortex. (doi:10.1093/cercor/bhs364). PubMed, Web of Science, Google Scholar - 23
Janzen G& van Turennout M . 2004 Selective neural representation of objects relevant for navigation. Nat. Neurosci. 7, 673–677. (doi:10.1038/nn1257). Crossref, PubMed, Web of Science, Google Scholar - 24
Brown TI, Ross RS, Keller JB, Hasselmo ME& Stern CE . 2010 Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes. J. Neurosci. 30, 7414–7422. (doi:10.1523/Jneurosci.6021-09.2010). Crossref, PubMed, Web of Science, Google Scholar - 25
Epstein RA . 2008 Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci. 12, 388–396. (doi:10.1016/j.tics.2008.07.004). Crossref, PubMed, Web of Science, Google Scholar - 26
Vass LK& Epstein RA . 2013 Abstract representations of location and facing direction in the human brain. J. Neurosci. 33, 6133–6142. (doi:10.1523/JNEUROSCI.3873-12.2013). Crossref, PubMed, Web of Science, Google Scholar - 27
Epstein RA, Higgins JS, Jablonski K& Feiler AM . 2007 Visual scene processing in familiar and unfamiliar environments. J. Neurophysiol. 97, 3670–3683. (doi:10.1152/jn.00003.2007). Crossref, PubMed, Web of Science, Google Scholar - 28
Epstein RA, Parker WE& Feiler AM . 2007 Where am I now? Distinct roles for parahippocampal and retrosplenial cortices in place recognition. J. Neurosci. 27, 6141–6149. (doi:10.1523/JNEUROSCI.0799-07.2007). Crossref, PubMed, Web of Science, Google Scholar - 29
Epstein RA& Higgins JS . 2007 Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cereb. Cortex 17, 1680–1693. (doi:10.1093/cercor/bhl079). Crossref, PubMed, Web of Science, Google Scholar - 30
Park S& Chun MM . 2009 Different roles of the parahippocampal place area (PPA) and retrosplenial cortex (RSC) in panoramic scene perception. Neuroimage 47, 1747–1756. (doi:10.1016/j.neuroimage.2009.04.058). Crossref, PubMed, Web of Science, Google Scholar - 31
Takahashi N, Kawamura M, Shiota J, Kasahata N& Hirayama K . 1997 Pure topographic disorientation due to right retrosplenial lesion. Neurology 49, 464–469. (doi:10.1212/WNL.49.2.464). Crossref, PubMed, Web of Science, Google Scholar - 32
Taube JS . 1998 Head direction cells and the neurophysiological basis for a sense of direction. Prog. Neurobiol. 55, 225–256. (doi:10.1016/S0301-0082(98)00004-5). Crossref, PubMed, Web of Science, Google Scholar - 33
Baumann O& Mattingley JB . 2010 Medial parietal cortex encodes perceived heading direction in humans. J. Neurosci. 30, 12 897–12 901. (doi:10.1523/Jneurosci.3077-10.2010). Crossref, Web of Science, Google Scholar - 34
Morgan LK, Macevoy SP, Aguirre GK& Epstein RA . 2011 Distances between real-world locations are represented in the human hippocampus. J. Neurosci. 31, 1238–1245. (doi:10.1523/JNEUROSCI.4667-10.2011). Crossref, PubMed, Web of Science, Google Scholar - 35
Chen LL, Lin LH, Green EJ, Barnes CA& McNaughton BL . 1994 Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp. Brain Res. 101, 8–23. (doi:10.1007/BF00243212). Crossref, PubMed, Web of Science, Google Scholar - 36
Sato N, Sakata H, Tanaka YL& Taira M . 2006 Navigation-associated medial parietal neurons in monkeys. Proc. Natl Acad. Sci. USA 103, 17 001–17 006. (doi:10.1073/pnas.0604277103). Crossref, Web of Science, Google Scholar - 37
Shettleworth SJ . 1998 Cognition, evolution, and behavior, xv, p. 688. New York, NY: Oxford University Press. Google Scholar - 38
Manns JR& Eichenbaum H . 2009 A cognitive map for object memory in the hippocampus. Learn. Mem. 16, 616–624. (doi:10.1101/Lm.1484509). Crossref, PubMed, Web of Science, Google Scholar - 39
Hafting T, Fyhn M, Molden S, Moser MB& Moser EI . 2005 Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806. (doi:10.1038/nature03721). Crossref, PubMed, Web of Science, Google Scholar - 40
Matsumura N, Nishijo H, Tamura R, Eifuku S, Endo S& Ono T . 1999 Spatial- and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation. J. Neurosci. 19, 2382–2393. Crossref, Web of Science, Google Scholar - 41
Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL& Fried I . 2003 Cellular networks underlying human spatial navigation. Nature 425, 184–188. (doi:10.1038/nature01964). Crossref, PubMed, Web of Science, Google Scholar - 42
Doeller CF, Barry C& Burgess N . 2010 Evidence for grid cells in a human memory network. Nature 463, 657–661. (doi:10.1038/nature08704). Crossref, PubMed, Web of Science, Google Scholar - 43
Killian NJ, Jutras MJ& Buffalo EA . 2012 A map of visual space in the primate entorhinal cortex. Nature 491, 761–764. (doi:10.1038/Nature11587). Crossref, PubMed, Web of Science, Google Scholar - 44
Woollett K& Maguire EA . 2011 Acquiring ‘the knowledge’ of London's layout drives structural brain changes. Curr. Biol. 21, 2109–2114. (doi:10.1016/j.cub.2011.11.018). Crossref, PubMed, Web of Science, Google Scholar - 45
Schinazi VR, Nardi D, Newcombe NS, Shipley TF& Epstein RA . 2013 Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus 23, 515–528. (doi:10.1002/hipo.22111). Crossref, PubMed, Web of Science, Google Scholar - 46
Hartley T& Harlow R . 2012 An association between human hippocampal volume and topographical memory in healthy young adults. Front. Hum. Neurosci. 6. (doi:10.3389/fnhum.2012.00338). Crossref, PubMed, Web of Science, Google Scholar - 47
King JA, Burgess N, Hartley T, Vargha-Khadem F& O'Keefe J . 2002 Human hippocampus and viewpoint dependence in spatial memory. Hippocampus 12, 811–820. (doi:10.1002/hipo.10070). Crossref, PubMed, Web of Science, Google Scholar - 48
Hassabis D& Maguire EA . 2007 Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306. (doi:10.1016/j.tics.2007.05.001). Crossref, PubMed, Web of Science, Google Scholar - 49
Howard LR, Kumaran D, Olafsdottir HF& Spiers HJ . 2011 Double dissociation between hippocampal and parahippocampal responses to object-background context and scene novelty. J. Neurosci. 31, 5253–5261. (doi:10.1523/JNEUROSCI.6055-10.2011). Crossref, PubMed, Web of Science, Google Scholar - 50
Teng E& Squire LR . 1999 Memory for places learned long ago is intact after hippocampal damage. Nature 400, 675–677. (doi:10.1038/23276). Crossref, PubMed, Web of Science, Google Scholar - 51
Maguire EA, Nannery R& Spiers HJ . 2006 Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129, 2894–2907. (doi:10.1093/brain/awl286). Crossref, PubMed, Web of Science, Google Scholar - 52
Rosenbaum RS, Priselac S, Kohler S, Black SE, Gao F, Nadel L& Moscovitch M . 2000 Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nat. Neurosci. 3, 1044–1048. (doi:10.1038/79867). Crossref, PubMed, Web of Science, Google Scholar - 53
Kubie JL& Fenton AA . 2012 Linear look-ahead in conjunctive cells: an entorhinal mechanism for vector-based navigation. Front. Neural Circuits 6. (doi:10.3389/fncir.2012.00020). Crossref, PubMed, Web of Science, Google Scholar - 54
Muller RU, Stead M& Pach J . 1996 The hippocampus as a cognitive graph. J. Gen. Physiol. 107, 663–694. (doi:10.1085/jgp.107.6.663). Crossref, PubMed, Web of Science, Google Scholar - 55
Chrastil ER . 2013 Neural evidence supports a novel framework for spatial navigation. Psychon. Bull. Rev. 20, 208–227. (doi:10.3758/s13423-012-0351-6). Crossref, PubMed, Web of Science, Google Scholar - 56
Schinazi VR& Epstein RA . 2010 Neural correlates of real-world route learning. Neuroimage 53, 725–735. (doi:10.1016/j.neuroimage.2010.06.065). Crossref, PubMed, Web of Science, Google Scholar - 57
Trullier O, Wiener SI, Berthoz A& Meyer JA . 1997 Biologically based artificial navigation systems: review and prospects. Prog. Neurobiol. 51, 483–544. (doi:10.1016/S0301-0082(96)00060-3). Crossref, PubMed, Web of Science, Google Scholar - 58
Kuipers B, Tecuci DG& Stankiewicz BJ . 2003 The skeleton in the cognitive map: a computational and empirical exploration. Environ. Behav. 35, 81–106. (doi:10.1177/0013916502238866). Crossref, Web of Science, Google Scholar - 59
Kubie JL& Fenton AA . 2009 Heading-vector navigation based on head-direction cells and path integration. Hippocampus 19, 456–479. (doi:10.1002/hipo.20532). Crossref, PubMed, Web of Science, Google Scholar - 60
Meilinger T . 2008 The network of reference frames theory: a synthesis of graphs and cognitive maps. Spatial cognition VI learning, reasoning, and talking about space (eds, Freksa C, Newcombe NS, Gärdenfors P& Wölfl S ), pp. 344–360. Freiberg, Germany: Springer. Google Scholar - 61
- 62
Byrne P, Becker S& Burgess N . 2007 Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375. (doi:10.1037/0033-295X.114.2.340). Crossref, PubMed, Web of Science, Google Scholar