Abstract
The structure of photosystem II and the catalytic intermediate states of the Mn4CaO5 cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature.
Footnotes
References
- 1
Umena Y, Kawakami K, Shen JR& Kamiya N . 2011 Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60. (doi:10.1038/nature09913). Crossref, PubMed, Web of Science, Google Scholar - 2
Kok B, Forbush B& McGloin M . 1970 Cooperation of charges in photosynthetic oxygen evolution. I. A linear four step mechanism. Photochem. Photobiol. 11, 457–475. (doi:10.1111/j.1751-1097.1970.tb06017.x). Crossref, PubMed, Web of Science, Google Scholar - 3
Renger G . 2011 Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism. J. Photochem. Photobiol. B 104, 35–43. (doi:10.1016/j.jphotobiol.2011.01.023). Crossref, PubMed, Web of Science, Google Scholar - 4
Cox N, Pantazis DA, Neese F& Lubitz W . 2013 Biological water oxidation. Acc. Chem. Res. 46, 1588–1596. (doi:10.1021/ar3003249). Crossref, PubMed, Web of Science, Google Scholar - 5
Siegbahn PEM . 2009 Structures and energetics for O2 formation in photosystem II. Acc. Chem. Res. 42, 1871–1880. (doi:10.1021/ar900117k). Crossref, PubMed, Web of Science, Google Scholar - 6
Yamaguchi K, 2013 Full geometry optimizations of the mixed-valence CaMn4O4X(H2O)4 (X=OH or O) cluster in OEC of PS II: degree of symmetry breaking of the labile Mn-X-Mn bond revealed by several hybrid DFT calculations. Int. J. Quantum Chem. 113, 525–541. (doi:10.1002/qua.24117). Crossref, Web of Science, Google Scholar - 7
Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W& Orth P . 2001 Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743. (doi:10.1038/35055589). Crossref, PubMed, Web of Science, Google Scholar - 8
Loll B, Kern J, Saenger W, Zouni A& Biesiadka J . 2005 Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438, 1040–1044. (doi:10.1038/nature04224). Crossref, PubMed, Web of Science, Google Scholar - 9
Ferreira KN, Iverson TM, Maghlaoui K, Barber J& Iwata S . 2004 Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838. (doi:10.1126/science.1093087). Crossref, PubMed, Web of Science, Google Scholar - 10
Kamiya N& Shen JR . 2003 Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc. Natl Acad. Sci. USA 100, 98–103. (doi:10.1073/pnas.0135651100). Crossref, PubMed, Web of Science, Google Scholar - 11
Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A& Saenger W . 2009 Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol. 16, 334–342. (doi:10.1038/nsmb.1559). Crossref, PubMed, Web of Science, Google Scholar - 12
Yano J, 2005 X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc. Natl Acad. Sci. USA 102, 12 047–12 052. (doi:10.1073/pnas.0505207102). Crossref, Web of Science, Google Scholar - 13
Grabolle M, Haumann M, Müller C, Liebisch P& Dau H . 2006 Rapid loss of structural motifs in the manganese complex of oxygenic photosynthesis by X-ray irradiation at 10–300 K. J. Biol. Chem. 281, 4580–4588. (doi:10.1074/jbc.M509724200). Crossref, PubMed, Web of Science, Google Scholar - 14
Glöckner C, Kern J, Broser M, Zouni A, Yachandra V& Yano J . 2013 Structural changes of the oxygen evolving complex in photosystem II during the catalytic cycle. J. Biol. Chem. 288, 22 607–22 620. (doi:10.1074/jbc.M113.476622). Crossref, Web of Science, Google Scholar - 15
Sigfridsson KG, Chernev P, Leidel N, Popovic-Bijelic A, Graslund A& Haumann M . 2013 Rapid X-ray photoreduction of dimetal-oxygen cofactors in ribonucleotide reductase. J. Biol. Chem. 288, 9648–9661. (doi:10.1074/jbc.M112.438796). Crossref, PubMed, Web of Science, Google Scholar - 16
Daughtry KD, Xiao Y, Stoner-Ma D, Cho E, Orville AM, Liu P& Allen KN . 2012 Quaternary ammonium oxidative demethylation: X-ray crystallographic, resonance raman, and UV-visible spectroscopic analysis of a Rieske-type demethylase. J. Am. Chem. Soc. 134, 2823–2834. (doi:10.1021/ja2111898). Crossref, PubMed, Web of Science, Google Scholar - 17
Antonyuk SV& Hough MA . 2011 Monitoring and validating active site redox states in protein crystals. Biochim. Biophys. Acta Proteins Proteomics 1814, 778–784. (doi:10.1016/j.bbapap.2010.12.017). Crossref, Web of Science, Google Scholar - 18
Hersleth HP& Andersson KK . 2011 How different oxidation states of crystalline myoglobin are influenced by X-rays. Biochim. Biophys. Acta Proteins Proteomics 1814, 785–796. (doi:10.1016/j.bbapap.2010.07.019). Crossref, Web of Science, Google Scholar - 19
Noguchi T, Suzuki H, Tsuno M, Sugiura M& Kato C . 2012 Time-resolved infrared detection of the proton and protein dynamics during photosynthetic oxygen evolution. Biochemistry 51, 3205–3214. (doi:10.1021/bi300294n). Crossref, PubMed, Web of Science, Google Scholar - 20
Haddy A . 2007 EPR spectroscopy of the manganese cluster of photosystem II. Photosynth. Res. 92, 357–368. (doi:10.1007/s11120-007-9194-9). Crossref, PubMed, Web of Science, Google Scholar - 21
Brudvig GW . 2008 Water oxidation chemistry of photosystem II. Phil. Trans. R. Soc. B 363, 1211–1218. (doi:10.1098/rstb.2007.2217). Link, Web of Science, Google Scholar - 22
Rappaport F, Ishida N, Sugiura M& Boussac A . 2011 Ca2+ determines the entropy changes associated with the formation of transition states during water oxidation by photosystem II. Energ Environ. Sci. 4, 2520–2524. (doi:10.1039/c1ee01408k). Crossref, Web of Science, Google Scholar - 23
Messinger J, 2001 Absence of Mn-centered oxidation in the S2 -> S3 transition: implications for the mechanism of photosynthetic water oxidation. J. Am. Chem. Soc. 123, 7804–7820. (doi:10.1021/ja004307+). Crossref, PubMed, Web of Science, Google Scholar - 24
Haumann M, Liebisch P, Muller C, Barra M, Grabolle M& Dau H . 2005 Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310, 1019–1021. (doi:10.1126/science.1117551). Crossref, PubMed, Web of Science, Google Scholar - 25
Yano J, 2006 Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314, 821–825. (doi:10.1126/science.1128186). Crossref, PubMed, Web of Science, Google Scholar - 26
Glatzel P& Bergmann U . 2005 High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes: electronic and structural information. Coord. Chem. Rev. 249, 65–95. (doi:10.1016/j.ccr.2004.04.011). Crossref, Web of Science, Google Scholar - 27
Rappaport F, Blancharddesce M& Lavergne J . 1994 Kinetics of electron-transfer and electrochromic change during the redox transitions of the photosynthetic oxygen-evolving complex. Biochim. Biophys. Acta Bioenerg. 1184, 178–192. (doi:10.1016/0005-2728(94)90222-4). Crossref, Web of Science, Google Scholar - 28
Razeghifard MR& Pace RJ . 1999 EPR kinetic studies of oxygen release in thylakoids in PSII membranes: a kinetic intermediate in the S3 to S0 transition. Biochemistry 38, 1252–1257. (doi:10.1021/bi9811765). Crossref, PubMed, Web of Science, Google Scholar - 29
Cox N& Messinger J . 2013 Reflections on substrate water and dioxygen formation. Biochim. Biophys. Acta 1827, 1020–1030. (doi:10.1016/j.bbabio.2013.01.013). Crossref, PubMed, Web of Science, Google Scholar - 30
Neutze R, Wouts R, van der Spoel D, Weckert E& Hajdu J . 2000 Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757. (doi:10.1038/35021099). Crossref, PubMed, Web of Science, Google Scholar - 31
Chapman HN, 2011 Femtosecond X-ray protein nanocrystallography. Nature 470, 73–77. (doi:10.1038/nature09750). Crossref, PubMed, Web of Science, Google Scholar - 32
Boutet S, 2012 High-resolution protein structure determination by serial femtosecond crystallography. Science 337, 362–364. (doi:10.1126/science.1217737). Crossref, PubMed, Web of Science, Google Scholar - 33
Kern J, 2013 Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature. Science 340, 491–495. (doi:10.1126/science.1234273). Crossref, PubMed, Web of Science, Google Scholar - 34
Alonso-Mori R, 2012 Shot-by-shot energy-dispersive X-ray emission spectroscopy using an X-ray free electron laser. Proc. Natl Acad. Sci. USA 109, 19 103–19 107. (doi:10.1073/pnas.1211384109). Crossref, Web of Science, Google Scholar - 35
Kern J, 2014 Methods development for diffraction and spectroscopy studies of metalloenzymes at X-ray free-electron lasers. Phil. Trans. R. Soc. B 369, 20130590. (doi:10.1098/rstb.2013.0590). Link, Web of Science, Google Scholar - 36
Hattne J, 2014 Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nat. Methods 11, 545–548. Crossref, PubMed, Web of Science, Google Scholar - 37
Sauter NK, Hattne J, Grosse-Kunstleve RW& Echols N . 2013 New python-based methods for data processing. Acta Crystallogr. D 69, 1274–1282. (doi:10.1107/S0907444913000863). Crossref, PubMed, Google Scholar - 38
Kern J, 2012 Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proc. Natl Acad. Sci. USA 109, 9721–9726. (doi:10.1073/pnas.1204598109). Crossref, PubMed, Web of Science, Google Scholar - 39
Owen RL, Rudino-Pinera E& Garman EF . 2006 Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc. Natl Acad. Sci. USA 103, 4912–4917. (doi:10.1073/pnas.0600973103). Crossref, PubMed, Web of Science, Google Scholar - 40
Henderson R . 1990 Cryoprotection of protein crystals against radiation damage in electron and X-ray diffraction. Proc. R. Soc. Lond. B 241, 6–8. (doi:10.1098/rspb.1990.0057). Link, Web of Science, Google Scholar - 41
Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N& Alber T . 2011 Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc. Natl Acad. Sci. USA 108, 16 247–16 252. (doi:10.1073/pnas.1111325108). Crossref, Web of Science, Google Scholar - 42
Alonso-Mori R, 2012 A multicrystal wavelength dispersive X-ray spectrometer. Rev. Sci. Instrum. 83, 073114. (doi:10.1063/1.4737630). Crossref, PubMed, Web of Science, Google Scholar - 43
Barty A, 2012 Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photonics 6, 35–40. (doi:10.1038/nphoton.2011.297). Crossref, PubMed, Web of Science, Google Scholar - 44
Sierra RG, 2012 Nanoflow electrospinning serial femtosecond crystallography. Acta Cryst. D 68, 1584–1587. (doi:10.1107/S0907444912038152). Crossref, PubMed, Google Scholar