Abstract
Recent interest in the neural bases of spatial navigation stems from the discovery of neuronal populations with strong, specific spatial signals. The regular firing field arrays of medial entorhinal grid cells suggest that they may provide place cells with distance information extracted from the animal's self-motion, a notion we critically review by citing new contrary evidence. Next, we question the idea that grid cells provide a rigid distance metric. We also discuss evidence that normal navigation is possible using only landmarks, without self-motion signals. We then propose a model that supposes that information flow in the navigational system changes between light and dark conditions. We assume that the true map-like representation is hippocampal and argue that grid cells have a crucial navigational role only in the dark. In this view, their activity in the light is predominantly shaped by landmarks rather than self-motion information, and so follows place cell activity; in the dark, their activity is determined by self-motion cues and controls place cell activity. A corollary is that place cell activity in the light depends on non-grid cells in ventral medial entorhinal cortex. We conclude that analysing navigational system changes between landmark and no-landmark conditions will reveal key functional properties.
Footnotes
References
- 1
Tolman EC . 1948 Cognitive maps in rats and men. Psychol. Rev. 55, 189–208. (doi:10.1037/h0061626). Crossref, PubMed, Web of Science, Google Scholar - 2
O'Keefe J& Dostrovsky J . 1971 The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. Brain Res. 34, 171–175. (doi:10.1016/0006-8993(71)90358-1). Crossref, PubMed, Web of Science, Google Scholar - 3
- 4
Moser EI, Kropff E& Moser M-B . 2008 Place cells, grid cells, and the brain's spatial representation system. Ann. Rev. Neurosci. 31, 69–89. (doi:10.1146/annurev.neuro.31.061307.090723). Crossref, PubMed, Web of Science, Google Scholar - 5
Taube JS, Muller RU& Ranck JB . 1990 Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10, 420–435. Crossref, PubMed, Web of Science, Google Scholar - 6
Solstad T, Boccara CN, Kropff E, Moser M-B& Moser EI . 2008 Representation of geometric borders in the entorhinal cortex. Science 322, 1865–1868. (doi:10.1126/science.1166466). Crossref, PubMed, Web of Science, Google Scholar - 7
Hafting T, Fyhn M, Molden S, Moser M-B& Moser EI . 2005 Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806. (doi:10.1038/nature03721). Crossref, PubMed, Web of Science, Google Scholar - 8
McNaughton BL, Battaglia FP, Jensen O, Moser EI& Moser M-B . 2006 Path integration and the neural basis of the ‘cognitive map.’. Nat. Rev. Neurosci. 7, 663–678. (doi:10.1038/nrn1932). Crossref, PubMed, Web of Science, Google Scholar - 9
O'Keefe J . 1979 A review of the hippocampal place cells. Prog. Neurobiol. 13, 419–439. (doi:10.1016/0301-0082(79)90005-4). Crossref, PubMed, Web of Science, Google Scholar - 10
Neunuebel JP& Knierim JJ . 2012 Spatial firing correlates of physiologically distinct cell types of the rat dentate gyrus. J. Neurosci. 32, 3848–3858. (doi:10.1523/jneurosci.6038-11.2012). Crossref, PubMed, Web of Science, Google Scholar - 11
Muller RU, Kubie JL& Ranck JB . 1987 Spatial firing patterns of hippocampal complex-spike cells in a fixed environment. J. Neurosci. 7, 1935–1950. Crossref, PubMed, Web of Science, Google Scholar - 12
Park E, Dvorak D& Fenton A . 2011 Ensemble place codes in hippocampus: CA1, CA3, and dentate gyrus place cells have multiple place fields in large environments. PLoS ONE 6, e22349. (doi:10.1371/journal.pone.0022349). Crossref, PubMed, Web of Science, Google Scholar - 13
Muller RU, Bostock EM, Taube JS& Kubie JL . 1994 On the directional firing properties of hippocampal place cells. J. Neurosci. 14, 7235–7251. Crossref, PubMed, Web of Science, Google Scholar - 14
McHugh TJ, Blum KI, Tsien JZ, Tonegawa S& Wilson MA . 1996 Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87, 1339–1349. (doi:10.1016/S0092-8674(00)81828-0). Crossref, PubMed, Web of Science, Google Scholar - 15
Rotenberg A, Mayford M, Hawkins RD, Kandel ER& Muller RU . 1996 Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell 87, 1351–1361. (doi:10.1016/S0092-8674(00)81829-2). Crossref, PubMed, Web of Science, Google Scholar - 16
Cho YH, Giese KP, Tanila HT, Silva AJ& Eichenbaum H . 1998 Abnormal hippocampal spatial representations in aCaMKIIT286A and CREBαΔ-mice. Science 279, 867–869. (doi:10.1126/science.279.5352.867). Crossref, PubMed, Web of Science, Google Scholar - 17
Yartsev MM& Ulanovsky N . 2013 Representation of three-dimensional space in the hippocampus of flying bats. Science 340, 367–372. (doi:10.1126/science.1235338). Crossref, PubMed, Web of Science, Google Scholar - 18
Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL& Fried I . 2003 Cellular networks underlying human spatial navigation. Nature 425, 184–188. (doi:10.1038/nature01964). Crossref, PubMed, Web of Science, Google Scholar - 19
Thompson LT& Best PJ . 1990 Long-term stability of the place-field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Res. 509, 299–308. (doi:10.1016/0006-8993(90)90555-P). Crossref, PubMed, Web of Science, Google Scholar - 20
Fenton AA& Muller RU . 1998 Place cell discharge is extremely variable during individual passes of the rat through the firing field. Proc. Natl Acad. Sci. USA 95, 3182–3187. (doi:10.1073/pnas.95.6.3182). Crossref, PubMed, Web of Science, Google Scholar - 21
Fenton AA, 2010 Attention-like modulation of hippocampal place cell discharge. J. Neurosci. 30, 4613–4625. (doi:10.1523/jneurosci.5576-09.2010). Crossref, PubMed, Web of Science, Google Scholar - 22
Redish AD, 2001 Independence of firing-correlates of anatomically-proximate hippocampal pyramidal cells. J. Neurosci. 21, RC134. Crossref, PubMed, Web of Science, Google Scholar - 23
Wilson MA& McNaughton BL . 1993 Dynamics of the hippocampal ensemble code for space. Science 261, 1055–1058. (doi:10.1126/science.8351520). Crossref, PubMed, Web of Science, Google Scholar - 24
Muller RU, Kubie JL, Bostock EM, Taube JS& Quirk GJ . 1991 Spatial firing correlates of neurons in the hippocampal formation of freely moving rats. Brain and space (ed.& Paillard J ), pp. 296–333. London, UK: Oxford University Press. Google Scholar - 25
Muller RU& Kubie JL . 1987 The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7, 1951–1968. Crossref, PubMed, Web of Science, Google Scholar - 26
Guzowski JF, McNaughton BL, Barnes CA& Worley PF . 1999 Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124. (doi:10.1038/16046). Crossref, PubMed, Web of Science, Google Scholar - 27
Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, McNaughton BL& Moser M-B . 2005 Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309, 619–623. (doi:10.1126/science.1114037). Crossref, PubMed, Web of Science, Google Scholar - 28
O'Keefe J& Conway DH . 1978 Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590. (doi:10.1007/BF00239813). Crossref, PubMed, Web of Science, Google Scholar - 29
Taube JS, Muller RU& Ranck JB . 1990 Head direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 10, 436–447. Crossref, PubMed, Web of Science, Google Scholar - 30
Rotenberg A& Muller RU . 1997 Variable place-cell coupling to a continuous viewed stimulus: evidence that the hippocampus acts as a perceptual system. Phil. Trans. R. Soc. Lond. B 352, 1505–1513. (doi:10.1098/rstb.1997.0137). Link, Web of Science, Google Scholar - 31
Jeffery KJ, Donnett JG, Burgess N& O'Keefe J . 1997 Directional control of hippocampal place fields. Exp. Brain Res. 117, 131–142. (doi:10.1007/s002210050206). Crossref, PubMed, Web of Science, Google Scholar - 32
Cressant A, Muller RU& Poucet B . 1997 Failure of centrally placed objects to control the firing fields of hippocampal place cells. J. Neurosci. 17, 2531–2542. Crossref, PubMed, Web of Science, Google Scholar - 33
O'Keefe J& Speakman A . 1987 Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 68, 1–27. (doi:10.1007/BF00255230). Crossref, PubMed, Web of Science, Google Scholar - 34
Save E, Cressant A, Thinus-Blanc C& Poucet B . 1998 Spatial firing of hippocampal place cells in blind rats. J. Neurosci. 18, 1818–1826. Crossref, PubMed, Web of Science, Google Scholar - 35
Save E, Nerad L& Poucet B . 2000 Contribution of multiple sensory information to place field stability in hippocampal place cells. Hippocampus 10, 64–76. (doi:10.1002/(SICI)1098-1063(2000)10:1<64::AID-HIPO7>3.0.CO;2-Y). Crossref, PubMed, Web of Science, Google Scholar - 36
Chen GF, King JA, Burgess N& O'Keefe J . 2013 How vision and movement combine in the hippocampal place code. Proc. Natl Acad. Sci. USA 110, 378–383. (doi:10.1073/pnas.1215834110). Crossref, PubMed, Web of Science, Google Scholar - 37
Lee AK, Manns ID, Sakmann B& Brecht M . 2008 Whole-cell recordings in freely moving rats. Neuron 51, 399–407. (doi:10.1016/j.neuron.2006.07.004). Crossref, Web of Science, Google Scholar - 38
Harvey CD, Collman F, Dombeck DA& Tank DW . 2009 Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461, 941–946. (doi:10.1038/nature08499). Crossref, PubMed, Web of Science, Google Scholar - 39
Epsztein J, Brecht M& Lee AK . 2011 Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment. Neuron 70, 109–120. (doi:10.1016/j.neuron.2011.03.006). Crossref, PubMed, Web of Science, Google Scholar - 40
O'Keefe J& Burgess N . 2005 Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15, 853–866. (doi:10.1002/hipo.20115). Crossref, PubMed, Web of Science, Google Scholar - 41
O'Keefe J& Recce ML . 1993 Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3, 317–330. (doi:10.1002/hipo.450030307). Crossref, PubMed, Web of Science, Google Scholar - 42
Quirk GJ, Muller RU, Kubie JL& Ranck JB . 1992 The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J. Neurosci. 12, 1945–1963. Crossref, PubMed, Web of Science, Google Scholar - 43
Fyhn M, Molden S, Witter MP, Moser EI& Moser M-B . 2004 Spatial representation in the entorhinal cortex. Science 306, 1258–1264. (doi:10.1126/science.1099901). Crossref, Web of Science, Google Scholar - 44
Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter M, Moser M-B& Moser EI . 2006 Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312, 758–762. (doi:10.1126/science.1125572). Crossref, PubMed, Web of Science, Google Scholar - 45
Etienne AS& Jeffery KJ . 2004 Path integration in mammals. Hippocampus 14, 180–192. (doi:10.1002/hipo.10173). Crossref, PubMed, Web of Science, Google Scholar - 46
Jeffery KJ& Burgess N . 2006 A metric for the cognitive map: found at last? Trends Cogn. Sci. 10, 1–3. (doi:10.1016/j.tics.2005.11.002). Crossref, PubMed, Web of Science, Google Scholar - 47
Jeffery KJ . 2007 Self-localization and the entorhinal–hippocampal system. Cur. Opin. Neurobiol. 17, 684–691. (doi:10.1016/j.conb.2007.11.008). Crossref, PubMed, Web of Science, Google Scholar - 48
Fyhn M, Hafting T, Treves A, Moser MB& Moser EI . 2007 Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446, 190–194. (doi:10.1038/nature05601). Crossref, PubMed, Web of Science, Google Scholar - 49
Giocomo LM, Zilli EA, Fransen E& Hasselmo M . 2007 Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315, 1719–1722. (doi:10.1126/science.1139207). Crossref, PubMed, Web of Science, Google Scholar - 50
Barry C, Hayman R, Burgess N& Jeffery KJ . 2007 Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 10, 682–684. (doi:10.1038/nn1905). Crossref, PubMed, Web of Science, Google Scholar - 51
Stensola H, Stensola T, Solstad T, Froland K, Moser M-B& Moser EI . 2012 The entorhinal grid map is discretized. Nature 492, 72–78. (doi:10.1038/nature11649). Crossref, PubMed, Web of Science, Google Scholar - 52
Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, Kubie JL, Roudi Y, Moser EI& Moser MB . 2013 Grid cells require excitatory drive from the hippocampus. Nat. Neurosci. 16, 309–317. (doi:10.1038/nn.3311). Crossref, PubMed, Web of Science, Google Scholar - 53
Domnisoru C, Kinkhabwala AA& Tank DW . 2013 Membrane potential dynamics of grid cells. Nature 495, 199–204. (doi:10.1038/nature11973). Crossref, PubMed, Web of Science, Google Scholar - 54
Schmidt-Hieber C& Haeusser M . 2013 Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat. Neurosci. 16, 325–331. (doi:10.1038/nn.3340). Crossref, PubMed, Web of Science, Google Scholar - 55
Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K& Hasselmo ME . 2011 Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332, 595–599. (doi:10.1126/science.1201652). Crossref, PubMed, Web of Science, Google Scholar - 56
Koenig J, Linder AN, Leutgeb JK& Leutgeb S . 2011 The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science 332, 592–595. (doi:10.1126/science.1201685). Crossref, PubMed, Web of Science, Google Scholar - 57
Lever C, Burton S, Jeewajee A, O'Keefe J& Burgess N . 2009 Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 29, 9771–9777. (doi:10.1523/jneurosci.1319-09.2009). Crossref, PubMed, Web of Science, Google Scholar - 58
Song E, Fox SE, Rivard B& Muller RU . 2012 Neuronal representations of two visual stimuli modifications on the network level of the spatial cognition in rat brain. Program No. 293.05. Neuroscience Meeting Planner. New Orleans, LA: Society for Neuroscience. Google Scholar - 59
Zhang S-J, Ye J, Miao C, Tsao A, Cerniauskas I, Ledergerber D, Moser M-B& Moser EI . 2013 Optogenetic dissection of entorhinal–hippocampal functional connectivity. Science 340. (doi:10.1126/science.1232627). Crossref, Web of Science, Google Scholar - 60
Hartley T, Burgess N, Lever C, Cacucci F& O'Keefe J . 2000 Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus 10, 369–379. (doi:10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0). Crossref, PubMed, Web of Science, Google Scholar - 61
Barry C& Burgess N . 2007 Learning in a geometric model of place cell firing. Hippocampus 17, 786–800. (doi:10.1002/hipo.20324). Crossref, PubMed, Web of Science, Google Scholar - 62
Fuhs MC& Touretzky DS . 2006 A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26, 4266–4276. (doi:10.1523/jneurosci.1353-05.2006). Crossref, PubMed, Web of Science, Google Scholar - 63
Solstad T, Moser EI& Einevoll GT . 2006 From grid cells to place cells: a mathematical model. Hippocampus 16, 1026–1031. (doi:10.1002/hipo.20244). Crossref, PubMed, Web of Science, Google Scholar - 64
Cheng S& Frank LM . 2011 The structure of networks that produce the transformation from grid cells to place cells. Neuroscience 197, 293–306. (doi:10.1016/j.neuroscience.2011.09.002). Crossref, PubMed, Web of Science, Google Scholar - 65
Jung MW, Wiener SI& McNaughton BL . 1994 Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J. Neurosci. 14, 7347–7356. Crossref, PubMed, Web of Science, Google Scholar - 66
Monaco JD& Abbott LF . 2011 Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping. J. Neurosci. 31, 9414–9425. (doi:10.1523/jneurosci.1433-11.2011). Crossref, PubMed, Web of Science, Google Scholar - 67
Fiete IR, Burak Y& Brookings T . 2008 What grid cells convey about rat location. J. Neurosci. 28, 6858–6871. (doi:10.1523/jneurosci.5684-07.2008). Crossref, PubMed, Web of Science, Google Scholar - 68
Sreenivasan S& Fiete I . 2011 Grid cells generate an analog error-correcting code for singularly precise neural computation. Nat. Neurosci. 14, 1330–1337. (doi:10.1038/nn.2901). Crossref, PubMed, Web of Science, Google Scholar - 69
Kubie JL& Fenton AA . 2012 Linear look-ahead in conjunctive cells: an entorhinal mechanism for vector-based navigation. Front. Neural Circuits 6, 20. (doi:10.3389/fncir.2012.00020). Crossref, PubMed, Web of Science, Google Scholar - 70
Wills TJ, Cacucci F, Burgess N& O'Keefe J . 2010 Development of the hippocampal cognitive map in preweanling rats. Science 328, 1573–1576. (doi:10.1126/science.1188224). Crossref, PubMed, Web of Science, Google Scholar - 71
Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI& Moser MB . 2010 Development of the spatial representation system in the rat. Science 18, 1576–1580. (doi:10.1126/science.1188210). Crossref, Web of Science, Google Scholar - 72
Mizumori SJY, McNaughton BL, Barnes CA& Fox K . 1989 Preserved spatial coding in hippocampal CA1 pyramidal cells during reversible suppression of CA3c output: Evidence for pattern completion in hippocampus. J. Neurosci. 9, 3915–3928. Crossref, PubMed, Web of Science, Google Scholar - 73
Van Cauter T, Poucet B& Save E . 2008 Unstable CA1 place cell representations in rats with entorhinal cortex lesions. Eur. J. Neurosci. 27, 1933–1946. (doi:10.1111/j.1460-9568.2008.06158.x). Crossref, PubMed, Web of Science, Google Scholar - 74
Mizuseki K, Sirota A, Pastalkova E& Buzsaki G . 2009 Theta oscillations provide temporal windows for local circuit computation in the entorhinal–hippocampal loop. Neuron 64, 267–280. (doi:10.1016/j.neuron.2009.08.037). Crossref, PubMed, Web of Science, Google Scholar - 75
Moser EI& Moser MB . 2008 A metric for space. Hippocampus 18, 1142–1156. (doi:10.1002/hipo.20483). Crossref, PubMed, Web of Science, Google Scholar - 76
O'Keefe J& Burgess N . 1996 Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428. (doi:10.1038/381425a0). Crossref, PubMed, Web of Science, Google Scholar - 77
Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, Moser M-B& Moser EI . 2009 Fragmentation of grid cell maps in a multicompartment environment. Nat. Neurosci. 12, 1325–1332. (doi:10.1038/nn.2396). Crossref, PubMed, Web of Science, Google Scholar - 78
Barry C, Ginzberg LL, O'Keefe J& Burgess N . 2012 Grid cell firing patterns signal environmental novelty by expansion. Proc. Natl Acad. Sci. USA 109, 17 687–17 692. (doi:10.1073/pnas.1209918109). Crossref, Web of Science, Google Scholar - 79
Fenton AA, Csizmadia G& Muller RU . 2000 Conjoint control of hippocampal place cell firing by two visual stimuli. I. The effects of moving the stimuli on firing field positions. J. Gen. Physiol. 116, 191–209. (doi:10.1085/jgp.116.2.191). Crossref, PubMed, Web of Science, Google Scholar - 80
Fenton AA, Csizmadia G& Muller RU . 2000 Conjoint control of hippocampal place cell firing by two visual stimuli. II. A vector-field theory that predicts modifications of the representation of the environment. J. Gen. Physiol. 116, 211–221. (doi:10.1085/jgp.116.2.211). Crossref, PubMed, Web of Science, Google Scholar - 81
Burgess N& Hartley T . 2002 Orientational and geometric determinants of place and head-direction. Advances in neural information processing systems (eds, Dietterich TG, Becker S& Ghahramani Z ), 14th edn, pp. 165–172. Cambridge, MA: MIT Press. Google Scholar - 82
Touretzky DS, Weisman WE, Fuhs MC, Skaggs WE, Fenton AA& Muller RU . 2005 Deforming the hippocampal map. Hippocampus 15, 41–55. (doi:10.1002/hipo.20029). Crossref, PubMed, Web of Science, Google Scholar - 83
Mittelstaedt ML& Mittelstaedt H . 1980 Homing by path integration in a mammal. Naturwissenschaften 67, 566–567. (doi:10.1007/BF00450672). Crossref, Web of Science, Google Scholar - 84
Rochefort C, Arabo A, André M, Poucet B, Save E& Rondi-Reig l . 2011 Cerebellum shapes hippocampal spatial code. Science 334, 385–389. (doi:10.1126/science.1207403). Crossref, PubMed, Web of Science, Google Scholar - 85
Burguière E, Arleo A, Hojjati MR, Elgersma Y, De Zeeuw CI, Berthoz A& Rondi-Reig L . 2005 Spatial navigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit? Nat. Neurosci. 8, 1292–1294. (doi:10.1038/nn1532). Crossref, PubMed, Web of Science, Google Scholar - 86
Van Strien NM, Cappaert NL& Witter MP . 2009 The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network. Nat. Rev. Neurosci. 10, 272–282. (doi:10.1038/nrn2614). Crossref, PubMed, Web of Science, Google Scholar - 87
Sugar J, Witter MP, van Strien NM& Cappaert NLM . 2011 The retrosplenial cortex: intrinsic connectivity and connections with the (para) hippocampal region in the rat. An interactive connectome. Front. Neuroinform. 5, 1–13. (doi:10.3389/fninf.2011.00007). Crossref, PubMed, Google Scholar - 88
Jezek K, Henriksen EJ, Treves A, Moser EI& Moser MB . 2011 Theta-paced flickering between place-cell maps in the hippocampus. Nature 478, 246–249. (doi:10.1038/nature10439). Crossref, PubMed, Web of Science, Google Scholar