Abstract
Artificial light at night (ALAN) threatens natural ecosystems globally. While ALAN research is increasing, little is known about how ALAN affects plants and interactions with other organisms. We explored the effects of ALAN on plant defence and plant–insect interactions using barley (Hordeum vulgare) and the English grain aphid (Sitobion avenae). Plants were exposed to ‘full’ or ‘part’ nights of 15–20 lux ALAN, or no ALAN ‘control’ nights, to test the effects of ALAN on plant growth and defence. Although plant growth was only minimally affected by ALAN, aphid colony growth and aphid maturation were reduced significantly by ALAN treatments. Importantly, we found strong differences between full-night and part-night ALAN treatments. Contrary to our expectations, part ALAN had stronger negative effects on aphid colony growth than full ALAN. Defence-associated gene expression was affected in some cases by ALAN, but also positively correlated with aphid colony size, suggesting that the effects of ALAN on plant defences are indirect, and regulated via direct disruption of aphid colonies rather than via ALAN-induced upregulation of defences. Mitigating ecological side effects of ALAN is a complex problem, as reducing exposure to ALAN increased its negative impact on insect herbivores.
This article is part of the theme issue ‘Light pollution in complex ecological systems’.
Footnotes
References
- 1.
Gaston KJ, Visser ME, Hölker F . 2015 The biological impacts of artificial light at night: the research challenge. Phil. Trans. R. Soc. B 370, 20140133. (doi:10.1098/rstb.2014.0133) Link, Web of Science, Google Scholar - 2.
Kyba C. C. M. L. (2017). Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv., 3, e1701528. (doi:10.1126/sciadv.1701528) Crossref, PubMed, Web of Science, Google Scholar - 3.
Senzaki M 2020 Sensory pollutants alter bird phenology and fitness across a continent. Nature 587, 605-609. (doi:10.1038/s41586-020-2903-7) Crossref, PubMed, Web of Science, Google Scholar - 4.
Falcón J, Torriglia A, Attia D, Viénot F, Gronfier C, Behar-Cohen F, Martinsons C, Hicks D . 2020 Exposure to artificial light at night and the consequences for flora, fauna, and ecosystems. Front. Neurosci. 14, 1183. (doi:10.3389/fnins.2020.602796) Crossref, Web of Science, Google Scholar - 5.
Sanders D, Frago E, Kehoe R, Patterson C, Gaston KJ . 2021 A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol 5, 74-81. (doi:10.1038/s41559-020-01322-x) Crossref, PubMed, Web of Science, Google Scholar - 6.
Duarte C 2019 Artificial light pollution at night (ALAN) disrupts the distribution and circadian rhythm of a sandy beach isopod. Environ. Pollut 248, 565-573. (doi:10.1016/j.envpol.2019.02.037) Crossref, PubMed, Web of Science, Google Scholar - 7.
Perkin EK, Hölker F, Richardson JS, Sadler JP, Wolter C, Tockner K . 2011 The influence of artificial light on stream and riparian ecosystems: questions, challenges, and perspectives. Ecosphere 2, 1-16. (doi:10.1890/ES11-00241.1) Crossref, Web of Science, Google Scholar - 8.
Ayalon I, de Barros Marangoni LF, Benichou JI, Avisar D, Levy O . 2019 Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment. Glob. Change Biol. 25, 4194-4207. (doi:10.1111/gcb.14795) Crossref, PubMed, Web of Science, Google Scholar - 9.
Desouhant E, Gomes E, Mondy N, Amat I . 2019 Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomol. Exp. Appl. 167, 37-58. (doi:10.1111/eea.12754) Crossref, Web of Science, Google Scholar - 10.
Stone EL, Harris S, Jones G . 2015 Impacts of artificial lighting on bats: a review of challenges and solutions. Mammal. Biol. 80, 213-219. (doi:10.1016/j.mambio.2015.02.004) Crossref, Web of Science, Google Scholar - 11.
Dominoni D, Quetting M, Partecke J . 2013 Artificial light at night advances avian reproductive physiology. Proc. R. Soc. B 280, 20123017. (doi:10.1098/rspb.2012.3017) Link, Web of Science, Google Scholar - 12.
Briggs WR . 2006Physiology of plant responses to artificial night lighting . In Ecological consequences of artificial night lighting (edsRich C, Longcore T ), pp. 389-411. Washington, DC: Island Press. Google Scholar - 13.
Bennie J, Davies TW, Cruse D, Gaston KJ . 2016 Ecological effects of artificial light at night on wild plants. J. Ecol. 104, 611-620. (doi:10.1111/1365-2745.12551) Crossref, Web of Science, Google Scholar - 14.
Heinen R . 2021 A spotlight on the phytobiome: plant-mediated interactions in an illuminated world. Basic Appl. Ecol. 57, 146-158. (doi:10.1016/j.baae.2021.10.007) Crossref, Web of Science, Google Scholar - 15.
Gaston KJ . 2018 Lighting up the nighttime. Science 362, 744-746. (doi:10.1126/science.aau8226) Crossref, PubMed, Web of Science, Google Scholar - 16.
Kyba CCM, Ruhtz T, Fischer J, Hölker F . 2011 Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS ONE 6, e17307. (doi:10.1371/journal.pone.0017307) Crossref, PubMed, Web of Science, Google Scholar - 17.
Rich C, Longcore T (eds) 2013 Ecological consequences of artificial night lighting. Washington, DC: Island Press. Google Scholar - 18.
Hölker F, Wolter C, Perkin EK, Tockner K . 2010 Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681-682. (doi:10.1016/j.tree.2010.09.007) Crossref, PubMed, Web of Science, Google Scholar - 19.
van Geffen KG, van Grunsven RH, van Ruijven J, Berendse F, Veenendaal EM . 2014 Artificial light at night causes diapause inhibition and sex-specific life history changes in a moth. Ecol. Evol. 4, 2082-2089. (doi:10.1002/ece3.1090) Crossref, PubMed, Web of Science, Google Scholar - 20.
Spoelstra K, van Grunsven RH, Donners M, Gienapp P, Huigens ME, Slaterus R, Berendse F, Visser ME, Veenendaal E . 2015 Experimental illumination of natural habitat—an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Phil. Trans. R. Soc. B 370, 20140129. (doi:10.1098/rstb.2014.0129) Link, Web of Science, Google Scholar - 21.International Darksky Association. 2023 Resources – what is light pollution? Tucson, AZ: International Darksky Association. (See https://darksky.org/resources/what-is-light-pollution/.) Google Scholar
- 22.
Gaston KJ, Davies TW, Bennie J, Hopkins J . 2012 Reducing the ecological consequences of night‐time light pollution: options and developments. J. Appl. Ecol. 49, 1256-1266. (doi:10.1111/j.1365-2664.2012.02212.x) Crossref, PubMed, Web of Science, Google Scholar - 23.
Day J, Baker J, Schofield H, Mathews F, Gaston KJ . 2015 Part-night lighting: implications for bat conservation. Anim. Conserv. 18, 512-516. (doi:10.1111/acv.12200) Crossref, Web of Science, Google Scholar - 24.
Yang YX . 2015a RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Genomics 16, 120. (doi:10.1186/s12864-015-1228-7) Crossref, PubMed, Web of Science, Google Scholar - 25.
Wu MC, Hou CY, Jiang CM, Wang YT, Wang CY, Chen HH, Chang HM . 2007 A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 101, 1753-1758. (doi:10.1016/j.foodchem.2006.02.010) Crossref, Web of Science, Google Scholar - 26.
Mittler R . 2002 Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410. (doi:10.1016/S1360-1385(02)02312-9) Crossref, PubMed, Web of Science, Google Scholar - 27.
Smith HL, McAusland L, Murchie EH . 2017 Don't ignore the green light: exploring diverse roles in plant processes. J. Exp. Bot. 68, 2099-2110. (doi:10.1093/jxb/erx098) Crossref, PubMed, Web of Science, Google Scholar - 28.
Grubisic M, van Grunsven RH, Manfrin A, Monaghan MT, Hölker F . 2018 A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch. Environ. Pollut 240, 630-638. (doi:10.1016/j.envpol.2018.04.146) Crossref, PubMed, Web of Science, Google Scholar - 29.
Ballare CL . 2009 Illuminated behaviour: phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant Cell Environ. 32, 713-725. (doi:10.1111/j.1365-3040.2009.01958.x) Crossref, PubMed, Web of Science, Google Scholar - 30.
Ballaré CL . 2014 Light regulation of plant defense. Annu. Rev. Plant Biol. 65, 335-363. (doi:10.1146/annurev-arplant-050213-040145) Crossref, PubMed, Web of Science, Google Scholar - 31.
Ballaré CL, Pierik R . 2017 The shade-avoidance syndrome: multiple signals and ecological consequences. Plant Cell Environ. 40, 2530-2543. (doi:10.1111/pce.12914) Crossref, PubMed, Web of Science, Google Scholar - 32.
Wit Md, Spoel SH, Sanchez-Perez GF, Gommers CM, Pieterse CM, Voesenek LA, Pierik R . 2013 Perception of low red: far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J. 75, 90-103. (doi:10.1111/tpj.12203) Crossref, PubMed, Web of Science, Google Scholar - 33.
Izaguirre MM, Mazza CA, Biondini M, Baldwin IT, Ballaré CL . 2006 Remote sensing of future competitors: impacts on plant defenses. Proc. Natl Acad. Sci. 103, 7170-7174. (doi:10.1073/pnas.0509805103) Crossref, PubMed, Web of Science, Google Scholar - 34.
Izaguirre MM, Mazza CA, Astigueta MS, Ciarla AM, Ballaré CL . 2013 No time for candy: passionfruit (Passiflora edulis) plants down-regulate damage-induced extra floral nectar production in response to light signals of competition. Oecologia 173, 213-221. (doi:10.1007/s00442-013-2721-9) Crossref, PubMed, Web of Science, Google Scholar - 35.
Engelen-Eigles G, Holden G, Cohen JD, Gardner G . 2006 The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J. Agric. Food Chem. 54, 328-334. (doi:10.1021/jf051857o) Crossref, PubMed, Web of Science, Google Scholar - 36.
Moreno JE, Tao Y, Chory J, Ballaré CL . 2009 Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc. Natl Acad. Sci. USA 106, 4935-4940. (doi:10.1073/pnas.0900701106) Crossref, PubMed, Web of Science, Google Scholar - 37.
Agrawal AA, Kearney EE, Hastings AP, Ramsey TE . 2012 Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca). J. Chem. Ecol. 38, 893-901. (doi:10.1007/s10886-012-0145-3) Crossref, PubMed, Web of Science, Google Scholar - 38.
Cargnel MD, Demkura PV, Ballaré CL . 2014 Linking phytochrome to plant immunity: low red: far‐red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. New Phytol. 204, 342-354. (doi:10.1111/nph.13032) Crossref, PubMed, Web of Science, Google Scholar - 39.
Roden LC, Ingle RA . 2009 Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant–pathogen interactions. Plant Cell 21, 2546-2552. (doi:10.1105/tpc.109.069922) Crossref, PubMed, Web of Science, Google Scholar - 40.
Kraiselburd I, Moyano L, Carrau A, Tano J, Orellano EG . 2017 Bacterial photosensory proteins and their role in plant–pathogen interactions. Photochem. Photobiol. 93, 666-674. (doi:10.1111/php.12754) Crossref, PubMed, Web of Science, Google Scholar - 41.
Bennie J, Davies TW, Cruse D, Inger R, Gaston KJ . 2015b Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem. Phil. Trans. R. Soc. B 370, 20140131. (doi:10.1098/rstb.2014.0131) Link, Web of Science, Google Scholar - 42.
Yang YX . 2015b Light-induced systemic resistance in tomato plants against root-knot nematode Meloidogyne incognita. Plant Growth Regulation 76, 167-175. (doi:10.1007/s10725-014-9986-9) Crossref, Web of Science, Google Scholar - 43.
Sanders D, Kehoe R, Cruse D, van Veen FF, Gaston KJ . 2018 Low levels of artificial light at night strengthen top-down control in insect food web. Curr. Biol. 28, 2474-2478. (doi:10.1016/j.cub.2018.05.078) Crossref, PubMed, Web of Science, Google Scholar - 44.
Sanchez‐Mahecha O, Klink S, Heinen R, Rothballer M, Zytynska S . 2022 Impaired microbial N‐acyl homoserine lactone signalling increases plant resistance to aphids across variable abiotic and biotic environments. Plant Cell Environ. 45, 3052-3069. (doi:10.1111/pce.14399) Crossref, PubMed, Web of Science, Google Scholar - 45.
Roy J 2021 Ecotrons: powerful and versatile ecosystem analysers for ecology, agronomy and environmental science. Glob. Change Biol. 27, 1387-1407. (doi:10.1111/gcb.15471) Crossref, PubMed, Web of Science, Google Scholar - 46.
Christensen AB, Cho BH, Næsby M, Gregersen PL, Brandt J, Madriz‐Ordeñana K, Collinge DB, Thordal‐Christensen H . 2002 The molecular characterization of two barley proteins establishes the novel PR‐17 family of pathogenesis‐related proteins. Mol. Plant Pathol. 3, 135-144. (doi:10.1046/j.1364-3703.2002.00105.x) Crossref, PubMed, Web of Science, Google Scholar - 47.
van Loon LC, Rep M, Pieterse CM . 2006 Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135-162. (doi:10.1146/annurev.phyto.44.070505.143425) Crossref, PubMed, Web of Science, Google Scholar - 48.
Zhang WJ . 2012 Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c. Mol. Plant Pathol. 13, 1110-1119. (doi:10.1111/j.1364-3703.2012.00820.x) Crossref, PubMed, Web of Science, Google Scholar - 49.
Grönberg N . 2006 Induction of pathogenesis-related genes, PR-17a and N-methyltransferase, in barley infested by the aphid Rhopalosiphum padi. Masters thesis, Södertörn University, Flemingsberg, Sweden. (See http://www.diva-portal.org/smash/get/diva2:16371/FULLTEXT01.pdf.) Google Scholar - 50.
Delp G, Gradin T, Åhman I, Jonsson LM . 2009 Microarray analysis of the interaction between the aphid Rhopalosiphum padi and host plants reveals both differences and similarities between susceptible and partially resistant barley lines. Mol. Genet. Genom. 281, 233-248. (doi:10.1007/s00438-008-0409-3) Crossref, PubMed, Web of Science, Google Scholar - 51.
Dey S . 2014 Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid. Plant Physiol. 166, 2133-2151. (doi:10.1104/pp.114.249276) Crossref, PubMed, Web of Science, Google Scholar - 52.
Lenk M 2019 Pipecolic acid is induced in barley upon infection and triggers immune responses associated with elevated nitric oxide accumulation. Mol. Plant Microbe Interact. 32, 1303-1313. (doi:10.1094/MPMI-01-19-0013-R) Crossref, PubMed, Web of Science, Google Scholar - 53.
Shrestha A, Elhady A, Adss S, Wehner G, Böttcher C, Heuer H, Ordon F, Schikora A . 2019 Genetic differences in barley govern the responsiveness to N-acyl homoserine lactone. Phytobiomes J. 3, 191-202. (doi:10.1094/PBIOMES-03-19-0015-R) Crossref, Google Scholar - 54.R Core Team. 2020 R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/. Google Scholar
- 55.
Bates D, Maechler M, Bolker B, Walker S . 2015 Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1-48. (doi:10.18637/jss.v067.i01) Crossref, Web of Science, Google Scholar - 56.
Fox J, Weisberg S . 2019 An {R} companion to applied regression, 3rd edn. Thousand Oaks, CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/ Google Scholar - 57.
Wickham H . 2016 Ggplot2: elegant graphics for data analysis. New York: NY: Springer-Verlag. Crossref, Google Scholar - 58.
Hothorn T, Bretz F, Westfall P . 2008 Simultaneous inference in general parametric models. Biom. J. 50, 346-363. (doi:10.1002/bimj.200810425) Crossref, PubMed, Web of Science, Google Scholar - 59.
Sanders D, Kehoe R, Tiley K, Bennie J, Cruse D, Davies TW, van Veen F, Gaston KJ . 2015 Artificial nighttime light changes aphid-parasitoid population dynamics. Sci. Rep. 5, 15232. (doi:10.1038/srep15232) Crossref, PubMed, Web of Science, Google Scholar - 60.
Bennie J, Davies TW, Inger R, Gaston KJ . 2018 Artificial light at night causes top‐down and bottom‐up trophic effects on invertebrate populations. J. Appl. Ecol. 55, 2698-2706. (doi:10.1111/1365-2664.13240) Crossref, Web of Science, Google Scholar - 61.
Will T, van Bel AJ . 2006 Physical and chemical interactions between aphids and plants. J. Exp. Bot. 57, 729-737. (doi:10.1093/jxb/erj089) Crossref, PubMed, Web of Science, Google Scholar - 62.
Douglas A . 2006 Phloem-sap feeding by animals: problems and solutions. J. Exp. Bot. 57, 747-754. (doi:10.1093/jxb/erj067) Crossref, PubMed, Web of Science, Google Scholar - 63.
Wang XD, Bi WS, Jing G, Yu XM, Wang HY, Liu DQ . 2018 Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley. J. Int. Agricult. 17, 2468-2477. (doi:10.1016/S2095-3119(17)61852-5) Google Scholar - 64.
Stitt M, Zeeman SC . 2012 Starch turnover: pathways, regulation and role in growth. Curr. Opin. Plant Biol. 15, 282-292. (doi:10.1016/j.pbi.2012.03.016) Crossref, PubMed, Web of Science, Google Scholar - 65.
Kwak MJ 2017 Stomatal movements depend on interactions between external night light cue and internal signals activated by rhythmic starch turnover and abscisic acid (ABA) levels at dawn and dusk. Acta Physiologiae Plantarum 39, 1-12. (doi:10.1007/s11738-016-2300-x) Crossref, Web of Science, Google Scholar - 66.
Kwak MJ 2018 Night light-adaptation strategies for photosynthetic apparatus in yellow-poplar (Liriodendron tulipifera L.) exposed to artificial night lighting. Forests 9, 74. (doi:10.3390/f9020074) Crossref, Web of Science, Google Scholar - 67.
Baraniya D, Nannipieri P, Kublik S, Vestergaard G, Schloter M, Schöler A . 2018 The impact of the diurnal cycle on the microbial transcriptome in the rhizosphere of barley. Microb. Ecol. 75, 830-833. (doi:10.1007/s00248-017-1101-0) Crossref, PubMed, Web of Science, Google Scholar - 68.
Alkhedir H, Karlovsky P, Vidal S . 2010 Effect of light intensity on colour morph formation and performance of the grain aphid Sitobion avenae F.(Homoptera: Aphididae). J. Insect Physiol. 56, 1999-2005. (doi:10.1016/j.jinsphys.2010.08.025) Crossref, PubMed, Web of Science, Google Scholar - 69.
Beer K, Joschinski J, Sastre AA, Krauss J, Helfrich-Förster C . 2017 A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum). Sci. Rep. 7, 1-9. (doi:10.1038/s41598-016-0028-x) Crossref, PubMed, Web of Science, Google Scholar - 70.
Joschinski J, Beer K, Helfrich-Förster C, Krauss J . 2016 Pea aphids (Hemiptera: Aphididae) have diurnal rhythms when raised independently of a host plant. J. Insect Sci. 16, 31. (doi:10.1093/jisesa/iew013) Crossref, PubMed, Web of Science, Google Scholar - 71.
Nalam V, Isaacs T, Moh S, Kansman J, Finke D, Albrecht T, Nachappa P . 2021 Diurnal feeding as a potential mechanism of osmoregulation in aphids. Insect Sci. 28, 521-532. (doi:10.1111/1744-7917.12787) Crossref, PubMed, Web of Science, Google Scholar - 72.
Narayandas GK, Alyokhin AV . 2006 Diurnal patterns in host finding by potato aphids, Macrosiphum euphorbiae (Homoptera: Aphididae). J. Insect Behav. 19, 347. (doi:10.1007/s10905-006-9029-0) Crossref, Web of Science, Google Scholar - 73.
Tjallingii WF . 1978 Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721-730. (doi:10.1111/j.1570-7458.1978.tb02836.x) Crossref, Web of Science, Google Scholar - 74.
Cieraad E, Strange E, Flink M, Schrama M, Spoelstra K . 2022 Artificial light at night affects plant–herbivore interactions. J. Appl. Ecol. 60, 400-410. (doi:10.1111/1365-2664.14336) Crossref, Web of Science, Google Scholar - 75.
Aphalo PJ, McLeod A, Heikkilä A, Gómez I, López Figueroa F, Robson MT, Strid Å . 2012 Beyond the visible: a handbook of best practice in plant UV photobiology, pp. 35-70. Helsinki, Finland: Helsingfors Universitet. Google Scholar - 76.
Heinen R . 2023Part-night exposure to artificial light at night has more detrimental effects on aphid colonies than fully lit nights . Figshare. (doi:10.6084/m9.figshare.c.6837639) Google Scholar