Abstract
Intra-oral food processing, including chewing, is important for safe swallowing and efficient nutrient assimilation across tetrapods. Gape cycles in tetrapod chewing consist of four phases (fast open and -close, and slow open and -close), with processing mainly occurring during slow close. Basal aquatic-feeding vertebrates also process food intraorally, but whether their chew cycles are partitioned into distinct phases, and how rhythmic their chewing is, remains unknown. Here, we show that chew cycles from sharks to salamanders are as rhythmic as those of mammals, and consist of at least three, and often four phases, with phase distinction occasionally lacking during jaw opening. In fishes and aquatic-feeding salamanders, fast open has the most variable duration, more closely resembling mammals than basal amniotes (lepidosaurs). Across ontogenetically or behaviourally mediated terrestrialization, salamanders show a distinct pattern of the second closing phase (near-contact) being faster than the first, with no clear pattern in partitioning of variability across phases. Our results suggest that distinct fast and slow chew cycle phases are ancestral for jawed vertebrates, followed by a complicated evolutionary history of cycle phase durations and jaw velocities across fishes, basal tetrapods and mammals. These results raise new questions about the mechanical and sensorimotor underpinnings of vertebrate food processing.
This article is part of the theme issue ‘Food processing and nutritional assimilation in animals’.
Footnotes
References
- 1.
Gintof C, Konow N, Ross CF, Sanford CPJ . 2010 Rhythmic chewing with oral jaws in teleost fishes: a comparison with amniotes. J. Exp. Biol. 213, 1868-1875. (doi:10.1242/jeb.041012) Crossref, PubMed, Web of Science, Google Scholar - 2.
Ross CF, Baden AL, Georgi J, Herrel A, Metzger KA, Reed DA, Schaerlaeken V, Wolff MS . 2010 Chewing variation in lepidosaurs and primates. J. Exp. Biol. 213, 572-584. (doi:10.1242/jeb.036822) Crossref, PubMed, Web of Science, Google Scholar - 3.
Cherney JH, Cherney DJR, Mertens DR . 1988 Fiber composition and digestion kinetics in grass stem internodes as influenced by particle size. J. Dairy Sci. 71, 2112-2122. (doi:10.3168/jds.S0022-0302(88)79784-2) Crossref, Web of Science, Google Scholar - 4.
Reilly SM, McBrayer LD, White TD . 2001 Prey processing in amniotes: biomechanical and behavioral patterns of food reduction. Comp. Biochem. Physiol. - A: Mol. Integr. Physiol. 128, 397-415. (doi:10.1016/S1095-6433(00)00326-3) Crossref, PubMed, Web of Science, Google Scholar - 5.
Fritz J, Hummel J, Kienzle E, Wings O, Streich WJ, Clauss M . 2011 Gizzard vs. teeth, it's a tie: food-processing efficiency in herbivorous birds and mammals and implications for dinosaur feeding strategies. Paleobiology 37, 577-586. (doi:10.1666/10031.1) Crossref, Web of Science, Google Scholar - 6.
Clissold FJ . 2007 The biomechanics of chewing and plant fracture: mechanisms and implications. In Advances in insect physiology, volume 34 (edsCasas J, Simpson SJ ), pp. 317-372. Cambridge, MA: Academic. Google Scholar - 7.
Clauss M, Hummel J . 2005 The digestive performance of mammalian herbivores: why big may not be that much better. Mamm. Rev. 35, 174-187. (doi:10.1111/j.1365-2907.2005.00062.x) Crossref, Web of Science, Google Scholar - 8.
Ross CF, Eckhardt A, Herrel A, Hylander WL, Metzger KA, Schaerlaeken V, Washington RL, Williams SH . 2007 Modulation of intra-oral processing in mammals and lepidosaurs. Integr. Comp. Biol. 47, 118-136. (doi:10.1093/icb/icm044) Crossref, PubMed, Web of Science, Google Scholar - 9.
Konow N, Cheney JA, Roberts TJ, Waldman JRS, Swartz SM. 2015 Spring or string: does tendon elastic action influence wing muscle mechanics in bat flight? Proc. R. Soc. B 282, 20151832. (doi:10.1098/rspb.2015.1832) Link, Web of Science, Google Scholar - 10.
Jung J-Y 2019 A natural stress deflector on the head? Mechanical and functional evaluation of the woodpecker skull bones. Adv. Theory Simul. 2, 1800152. (doi:10.1002/adts.201800152) Crossref, Web of Science, Google Scholar - 11.
van Casteren A, Codd JR, Kupczik K, Plasqui G, Sellers WI, Henry AG . 2022 The cost of chewing: the energetics and evolutionary significance of mastication in humans. Sci. Adv. 8, eabn8351. (doi:10.1126/sciadv.abn8351) Crossref, PubMed, Web of Science, Google Scholar - 12.
Hiiemae KM, Crompton AW . 1985 Mastication, food transport and swallowing. In Functional vertebrate morphology (edsHildebrand M, Bramble D, Liem K, Wake D ), pp. 262-290. Cambridge, MA: Harvard University Press. Crossref, Google Scholar - 13.
Ackermans NL, Winkler DE, Schulz-Kornas E, Kaiser TM, Müller DWH, Kircher PR, Hummel J, Clauss M, Hatt J-M . 2018 Controlled feeding experiments with diets of different abrasiveness reveal slow development of mesowear signal in goats (Capra aegagrus hircus). J. Exp. Biol. 221, jeb186411. (doi:10.1242/jeb.186411) Crossref, PubMed, Web of Science, Google Scholar - 14.
van Casteren A . 2020 Hard plant tissues do not contribute meaningfully to dental microwear: evolutionary implications. Sci. Rep. 10, 582. (doi:10.1038/s41598-019-57403-w) Crossref, PubMed, Web of Science, Google Scholar - 15.
Janis CM, Fortelius M . 1988 On the means whereby mammals achieve increased functional durability of their dentitions, with special reference to limiting factors. Biol. Rev. 63, 197-230. (doi:10.1111/j.1469-185X.1988.tb00630.x) Crossref, PubMed, Web of Science, Google Scholar - 16.
Lee JJ-W, Constantino PJ, Lucas PW, Lawn BR . 2011 Fracture in teeth—a diagnostic for inferring bite force and tooth function. Biol. Rev. 86, 959-974. (doi:10.1111/j.1469-185X.2011.00181.x) Crossref, PubMed, Web of Science, Google Scholar - 17.
Lucas P, Constantino P, Wood B, Lawn B . 2008 Dental enamel as a dietary indicator in mammals. Bioessays 30, 374-385. (doi:10.1002/bies.20729) Crossref, PubMed, Web of Science, Google Scholar - 18.
Herrel A, De Vree F . 2009 Jaw and hyolingual muscle activity patterns and bite forces in the herbivorous lizard Uromastyx acanthinurus. Arch. Oral Biol. 54, 772-782. (doi:10.1016/j.archoralbio.2009.05.002) Crossref, PubMed, Web of Science, Google Scholar - 19.
Herrel A, Verstappen M, De Vree F . 1999 Modulatory complexity of the feeding repertoire in scincid lizards. J. Comp. Physiol. A: Sens. Neural Behav. Physiol. 184, 501-518. (doi:10.1007/s003590050350) Crossref, Web of Science, Google Scholar - 20.
Gorniak GC, Rosenberg HI, Gans C . 1982 Mastication in the tuatara, Sphenodon punctatus (reptilia: Rhynchocephalia): structure and activity of the motor system. J. Morphol. 171, 321-353. (doi:10.1002/jmor.1051710307) Crossref, PubMed, Web of Science, Google Scholar - 21.
Herrel A, Meyers JJ, Nishikawa KC, Vree FD . 2001 The evolution of feeding motor patterns in lizards: modulatory complexity and possible constraints. Am. Zool. 41, 1311-1320. (doi:10.1093/icb/41.6.1311) Google Scholar - 22.
Ross CF, Reed DA, Washington RL, Eckhardt A, Anapol F, Shahnoor N . 2009 Scaling of chew cycle duration in primates. Am. J. Phys. Anthropol. 138, 30-44. (doi:10.1002/ajpa.20895) Crossref, PubMed, Web of Science, Google Scholar - 23.
Virot E, Ma G, Clanet C, Jung S . 2017 Physics of chewing in terrestrial mammals. Sci. Rep. 7, 43967. (doi:10.1038/srep43967) Crossref, PubMed, Web of Science, Google Scholar - 24.
Ross CF, Dharia R, Herring SW, Hylander WL, Liu Z-J, Rafferty KL, Ravosa MJ, Williams SH . 2007 Modulation of mandibular loading and bite force in mammals during mastication. J. Exp. Biol. 210, 1046-1063. (doi:10.1242/jeb.02733) Crossref, PubMed, Web of Science, Google Scholar - 25.
Komuro A, Morimoto T, Iwata K, Inoue T, Masuda Y, Kato T, Hidaka O . 2001 Putative feed-forward control of jaw-closing muscle activity during rhythmic jaw movements in the anesthetized rabbit. J. Neurophysiol. 86, 2834-2844. (doi:10.1152/jn.2001.86.6.2834) Crossref, PubMed, Web of Science, Google Scholar - 26.
Taylor A, Hidaka O, Durbaba R, Ellaway PH . 1997 Fusimotor influence on jaw muscle spindle activity during swallowing-related movements in the cat. J. Physiol. 503, 157-167. (doi:10.1111/j.1469-7793.1997.157bi.x) Crossref, PubMed, Web of Science, Google Scholar - 27.
Crowe A . 1992 Muscle spindles, tendon organs, joint receptors. Biol. Reptil. 17, 454-495. Google Scholar - 28.
Prochazka A, Hulliger M, Trend P, Dürmüller N . 1988 Dynamic and static fusimotor set in various behavioural contexts. In Mechanoreceptors: development, structure, function (edsHník P, Soukup T, Vejsada R, Zelená J ), pp. 417-430. Boston, MA: Springer. Crossref, Google Scholar - 29.
Ono RD . 1979 Sensory nerve endings of highly mobile structures in two marine teleost fishes. Zoomorphology 92, 107-114. (doi:10.1007/BF01001533) Crossref, Google Scholar - 30.
Maeda N, Miyoshi S, Toh H . 1983 First observation of a muscle spindle in fish. Nature 302, 61-62. (doi:10.1038/302061a0) Crossref, PubMed, Web of Science, Google Scholar - 31.
Wainwright PC, Mehta RS, Higham TE . 2008 Stereotypy, flexibility and coordination: key concepts in behavioral functional morphology. J. Exp. Biol. 211, 3523-3528. (doi:10.1242/jeb.007187) Crossref, PubMed, Web of Science, Google Scholar - 32.
Camp AL, Astley HC, Horner AM, Roberts TJ, Brainerd EL . 2016 Fluoromicrometry: a method for measuring muscle length dynamics with biplanar videofluoroscopy. J. Exp. Zool. A: Ecol. Genet. Physiol. 325, 399-408. (doi:10.1002/jez.2031) Crossref, PubMed, Google Scholar - 33.
Laurence-Chasen JD, Ramsay JB, Brainerd EL . 2019 Shearing overbite and asymmetrical jaw motions facilitate food breakdown in a freshwater stingray, Potamotrygon motoro. J. Exp. Biol. 222, jeb197681. (doi:10.1242/jeb.197681) Crossref, PubMed, Web of Science, Google Scholar - 34.
Schwarz D, Konow N, Roba YT, Heiss E . 2020 A salamander that chews using complex, three-dimensional mandible movements. J. Exp. Biol. 223, jeb220749. (doi:10.1242/jeb.220749) Crossref, PubMed, Web of Science, Google Scholar - 35.
Rull M, Solomon J, Konow N. 2020 Elastic recoil action amplifies jaw closing speed in an aquatic feeding salamander. Proc. R. Soc. B 287, 20200428. (doi:10.1098/rspb.2020.0428) Link, Web of Science, Google Scholar - 36.
Panessiti C, Rull-Garza M, Rickards G, Konow N . 2021 Thermal sensitivity of Axolotl feeding behaviors. Integr. Comp. Biol. 61, 1881-1891. (doi:10.1093/icb/icab120) Crossref, PubMed, Web of Science, Google Scholar - 37.
Heiss E, Schwarz D, Konow N . 2019 Chewing or not? Intraoral food processing in a salamandrid newt. J. Exp. Biol. 222, jeb.189886. (doi:10.1242/jeb.189886) Crossref, Web of Science, Google Scholar - 38.
Schwarz D, Gorb SN, Kovalev A, Konow N, Heiss E . 2020 Flexibility of intraoral food processing in the salamandrid newt Triturus carnifex: effects of environment and prey type. J. Exp. Biol. 223, jeb232868. (doi:10.1242/jeb.232868) Crossref, PubMed, Web of Science, Google Scholar - 39.
Heiss E, Aerts P, Van Wassenbergh S . 2013 Masters of change: seasonal plasticity in the prey-capture behavior of the Alpine newt Ichthyosaura alpestris (Salamandridae). J. Exp. Biol. 216, 4426-4434. (doi:10.1242/jeb.091991) Crossref, PubMed, Web of Science, Google Scholar - 40.
Ramsay JB, Wilga CD . 2017 Function of the hypobranchial muscles and hyoidiomandibular ligament during suction capture and bite processing in white-spotted bamboo sharks, Chiloscyllium plagiosum. J. Exp. Biol. 220, 4047-4059. (doi:10.1242/jeb.165290) PubMed, Web of Science, Google Scholar - 41.
Spence M, Rull-Garza M, Tolosa Roba Y, Konow N . 2023 Do salamanders chew? An XROMM analysis of ambystomatid intraoral feeding behaviours. Phil. Trans. R. Soc. B 378, 20220540. (doi:10.1098/rstb.2022.0540) Link, Google Scholar - 42.
Bemis WE, Lauder GV . 1986 Morphology and function of the feeding apparatus of the lungfish, Lepidosiren paradoxa (Dipnoi). J. Morphol. 187, 81-108. (doi:10.1002/jmor.1051870108) Crossref, PubMed, Web of Science, Google Scholar - 43.
Knörlein BJ, Baier DB, Gatesy SM, Laurence-Chasen JD, Brainerd EL . 2016 Validation of XMALab software for marker-based XROMM. J. Exp. Biol. 219, 3701-3711. (doi:10.1242/jeb.145383) Crossref, PubMed, Web of Science, Google Scholar - 44.
Sokal RR, Braumann CA . 1980 Significance tests for coefficients of variation and variability profiles. Syst. Zool. 29, 50-66. (doi:10.2307/2412626) Crossref, Google Scholar - 45.
Reed DA, Ross CF . 2010 The influence of food material properties on jaw kinematics in the primate, Cebus. Arch. Oral Biol. 55, 946-962. (doi:10.1016/j.archoralbio.2010.08.008) Crossref, PubMed, Web of Science, Google Scholar - 46.
Gerstner G, Madhavan S, Crane E . 2011 Mammalian oral rhythms and motor control. In Biomechanics in applications (ed.Klika V ), pp. 275-298. Rijeka, Croatia: IntechOpen. Google Scholar - 47.
Lund J, Kolta A . 2006 Generation of the central masticatory pattern and its modification by sensory feedback. Dysphagia 21, 167-174. (doi:10.1007/s00455-006-9027-6) Crossref, PubMed, Web of Science, Google Scholar - 48.
Miya M, Nishida M . 2014 The mitogenomic contributions to molecular phylogenetics and evolution of fishes: a 15-year retrospect. Ichthyol. Res. 62, 1-43. (doi:10.1007/s10228-014-0440-9) Web of Science, Google Scholar - 49.
Coots PS, Seifert AW . 2015 Thyroxine-Induced metamorphosis in the Axolotl (Ambystoma mexicanum). In Salamanders in regeneration research: methods and protocols (edsKumar A, Simon A ), pp. 141-145. New York, NY: Springer. Google Scholar - 50.
Faltings L, Young MW, Ross CF, Granatosky MC . 2022 Got rhythm? Rhythmicity differences reflect different optimality criteria in feeding and locomotor systems. Evolution 76, 2181-2190. (doi:10.1111/evo.14569) Crossref, PubMed, Web of Science, Google Scholar - 51.
Ballintijn C, Bamford O . 1975 Proprioceptive motor control in fish respiration. J. Exp. Biol. 62, 99-114. (doi:10.1242/jeb.62.1.99) Crossref, PubMed, Web of Science, Google Scholar - 52.
Dellow PG, Lund JP . 1971 Evidence for central timing of rhythmical mastication. J. Physiol. 215, 1-13. (doi:10.1113/jphysiol.1971.sp009454) Crossref, PubMed, Web of Science, Google Scholar - 53.
Gillis JA, Modrell MS, Baker CVH . 2013 Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton. Nat. Commun. 4, 1436. (doi:10.1038/ncomms2429) Crossref, PubMed, Web of Science, Google Scholar - 54.
Gegenbaur C . 1878 Elements of comparative anatomy. London, UK: Macmillan and Company. Crossref, Google Scholar - 55.
Bongianni F, Mutolo D, Cinelli E, Pantaleo T . 2016 Neural mechanisms underlying respiratory rhythm generation in the lamprey. Respir. Physiol. Neurobiol. 224, 17-26. (doi:10.1016/j.resp.2014.09.003) Crossref, PubMed, Web of Science, Google Scholar - 56.
Konow N, Sanford CPJ . 2008 Biomechanics of a convergently derived prey-processing mechanism in fishes: evidence from comparative tongue bite apparatus morphology and raking kinematics. J. Exp. Biol. 211, 3378-3391. (doi:10.1242/jeb.023564) Crossref, PubMed, Web of Science, Google Scholar - 57.
Sibbing FA . 1982 Pharyngeal mastication and food transport in the carp (Cyprinus carpio L.): a cineradiographic and electromyographic study. J. Morphol. 172, 223-258. (doi:10.1002/jmor.1051720208) Crossref, PubMed, Web of Science, Google Scholar - 58.
Gidmark NJ, Tarrant JC, Brainerd EL . 2014 Convergence in morphology and masticatory function between the pharyngeal jaws of grass carp, Ctenopharyngodon idella, oral jaws of amniote herbivores. J. Exp. Biol. 217, 1925-1932. (doi:10.1242/jeb.096248) Crossref, PubMed, Web of Science, Google Scholar - 59.
Grubich JR . 2000 Crushing motor patterns in drum (Teleostei: Sciaenidae): functional novelties associated with molluscivory. J. Exp. Biol. 203, 3161-3176. (doi:10.1242/jeb.203.20.3161) Crossref, PubMed, Web of Science, Google Scholar - 60.
Montuelle SJ, Herrel A, Schaerlaeken V, Metzger KA, Mutuyeyezu A, Bels VL . 2009 Inertial feeding in the teiid lizard Tupinambis merianae: the effect of prey size on the movements of hyolingual apparatus and the cranio-cervical system. J. Exp. Biol. 212, 2501-2510. (doi:10.1242/jeb.026336) Crossref, PubMed, Web of Science, Google Scholar - 61.
Schaerlaeken V, Montuelle SJ, Aerts P, Herrel A . 2011 Jaw and hyolingual movements during prey transport in varanid lizards: effects of prey type. Zoology 114, 165-170. (doi:10.1016/j.zool.2010.11.008) Crossref, PubMed, Web of Science, Google Scholar - 62.
Smith KK . 1986 Morphology and function of the tongue and hyoid apparatus in Varanus (varanidae, lacertilia). J. Morphol. 187, 261-287. (doi:10.1002/jmor.1051870302) Crossref, PubMed, Web of Science, Google Scholar - 63.
Schwenk K . 1995 Of tongues and noses: chemoreception in lizards and snakes. Trends Ecol. Evol. 10, 7-12. (doi:10.1016/S0169-5347(00)88953-3) Crossref, PubMed, Web of Science, Google Scholar - 64.
Elias JA, McBrayer L, Reilly SM . 2000 Prey transport kinematics in Tupinambis teguixin and Varanus exanthermaticus: conservation of feeding behavior in ‘chemosensory-tongued’ lizards. J. Exp. Biol. 203, 791-801. (doi:10.1242/jeb.203.4.791) Crossref, PubMed, Web of Science, Google Scholar - 65.
Hiiemae KM . 2000 Feeding in mammals. In Feeding: form, function and evolution in tetrapod vertebrates (ed.Schwenk K ), pp. 411-448. San Diego, CA: Academic Press. Crossref, Google Scholar - 66.
De Gueldre G, De Vree F . 1988 Quantitative electromyography of the masticatory muscles of Pteropus giganteus (Megachiroptera). J. Morphol. 196, 73-106. (doi:10.1002/jmor.1051960107) Crossref, PubMed, Web of Science, Google Scholar - 67.
Lund J . 1988 The generation of mastication by the mammalian central nervous system. Neural Control Rhythm. Mov. Vertebr. 1988, 87-113. Google Scholar - 68.
Miranda DL, Rainbow MJ, Crisco JJ, Fleming BC . 2013 Kinematic differences between optical motion capture and biplanar videoradiography during a jump–cut maneuver. J. Biomech. 46, 567-573. (doi:10.1016/j.jbiomech.2012.09.023) Crossref, PubMed, Web of Science, Google Scholar - 69.
Stilson K, Luo Z-X, Li P, Olson S, Ross C . 2023 Three-dimensional mandibular kinematics of mastication in the marsupial Didelphis virginiana. Phil. Trans. R. Soc. B 378, 20220548. (doi:10.1098/rstb.2022.0548) Link, Google Scholar - 70.
Panagiotopoulou O, Robinson D, Iriarte-Diaz J, Ackland D, Taylor A, Ross C . 2023 Dynamic finite element modelling of the macaque mandible during a complete mastication gape cycle. Phil. Trans. R. Soc. B 378, 20220549. (doi:10.1098/rstb.2022.0549) Link, Google Scholar - 71.
Laird M, Iriarte-Diaz J, Byron C, Granatosky M, Taylor A, Ross C . 2023 Gape drives regional variation in temporalis architectural dynamics in tufted capuchins. Phil. Trans. R. Soc. B 378, 20220550. (doi:10.1098/rstb.2022.0550) Link, Google Scholar - 72.
Grossnickle DM . 2020 Jaw roll and jaw yaw in early mammals. Nature 582, E6-E8. (doi:10.1038/s41586-020-2365-y) Crossref, PubMed, Web of Science, Google Scholar - 73.
Schalk CM, Luhring TM . 2010 Vagility of aquatic salamanders: implications for wetland connectivity. J. Herpetol. 44, 104-109. (doi:10.1670/08-312.1) Crossref, Web of Science, Google Scholar - 74.
Deban SM, Scales JA, Bloom SV, Easterling CM, O'Donnell MK, Olberding JP . 2020 Evolution of a high-performance and functionally robust musculoskeletal system in salamanders. Proc. Natl Acad. Sci. USA 117, 10 445-10 454. (doi:10.1073/pnas.1921807117) Crossref, Web of Science, Google Scholar - 75.
Heiss E, Handschuh S, Aerts P, Van Wassenbergh S . 2016 Musculoskeletal architecture of the prey capture apparatus in salamandrid newts with multiphasic lifestyle: does anatomy change during the seasonal habitat switches? J. Anat. 228, 757-770. (doi:10.1111/joa.12445) Crossref, PubMed, Web of Science, Google Scholar - 76.
Schwarz D, Konow N, Porro LB, Heiss E . 2020 Ontogenetic plasticity in cranial morphology is associated with a functional change in the food processing behavior in Alpine newts. Front. Zool. 17, 76. (doi:10.1186/s12983-020-00373-x) Crossref, Web of Science, Google Scholar - 77.
Lauder GV, Shaffer HB . 1988 Ontogeny of functional design in tiger salamanders (Ambystoma tigrinum): are motor patterns conserved during major morphological transformations? J. Morphol. 197, 249-268. (doi:10.1002/jmor.1051970302) Crossref, PubMed, Web of Science, Google Scholar - 78.
Shaffer HB, Lauder GV . 1988 The ontogeny of functional design - metamorphosis of deeding behavior in the Tiger salamander (Ambystoma tigrinum). J. Zool. 216, 437-454. (doi:10.1111/j.1469-7998.1988.tb02440.x) Crossref, Web of Science, Google Scholar - 79.
Richard BA, Spence M, Rull-Garza M, Tolosa Roba Y, Schwarz D, Ramsay JB, Laurence-Chasen JD, Ross CF, Konow N . 2023Rhythmic chew cycles with distinct fast and slow phases are ancestral to gnathostomes . Figshare. (doi:10.6084/m9.figshare.c.6836732) Google Scholar