Abstract
Negative density dependence (NDD) in biotic interactions of interference such as plant–plant competition, granivory and herbivory are well-documented mechanisms that promote species’ coexistence in diverse plant communities worldwide. Here, we investigated the generality of a novel type of NDD mechanism that operates through the mutualistic interactions of frugivory and seed dispersal among fruit-eating birds and plants. By sampling community-wide frugivory interactions at high spatial and temporal resolution in Pennsylvania, Puerto Rico, Peru, Brazil and Argentina, we evaluated whether interaction frequencies between birds and fruit resources occurred more often (selection), as expected, or below expectations (under-utilization) set by the relative fruit abundance of the fruit resources of each plant species. Our models considered the influence of temporal scales of fruit availability and bird phylogeny and diets, revealing that NDD characterizes frugivory across communities. Irrespective of taxa or dietary guild, birds tended to select fruits of plant species that were proportionally rare in their communities, or that became rare following phenological fluctuations, while they mostly under-utilized abundant fruit resources. Our results demonstrate that negative density-dependence in frugivore–plant interactions provides a strong equalizing mechanism for the dispersal processes of fleshy-fruited plant species in temperate and tropical communities, likely contributing to building and sustaining plant diversity.
This article is part of the theme issue 'Diversitydependence of dispersal: interspecific interactions determine spatial dynamics'.
Footnotes
References
- 1.
Chesson P . 2000 Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31 , 343–366. (doi:10.1146/annurev.ecolsys.31.1.343) Crossref, Google Scholar - 2.
Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu K, Krishnadas M, Beckman N, Zhu Y, Gómez-Aparicio L . 2014 Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102 , 845–856. (doi:10.1111/1365-2745.12232) Crossref, PubMed, Web of Science, Google Scholar - 3.
Silvertown J . 2004 Plant coexistence and the niche. Trends Ecol. Evol. (Amst.) 19 , 605–611. (doi:10.1016/j.tree.2004.09.003) Crossref, Web of Science, Google Scholar - 4.
Terborgh J . 2012 Enemies maintain hyperdiverse tropical forests. Am. Nat. 179 , 303–314. (doi:10.1086/664183) Crossref, PubMed, Web of Science, Google Scholar - 5.
Janzen DH . 1970 Herbivores and the number of tree species in tropical forests. Am. Nat. 104 , 501–528. (doi:10.1086/282687) Crossref, Web of Science, Google Scholar - 6.
Carlo TA, Morales JM . 2016 Generalist birds promote tropical forest regeneration and increase plant diversity via rare-biased seed dispersal. Ecology 97 , 1819–1831. (doi:10.1890/15-2147.1) Crossref, PubMed, Web of Science, Google Scholar - 7.
Howe HF, Estabrook GF . 1977 On intraspecific competition for avian dispersers in tropical trees. Am. Nat. 111 , 817–832. (doi:10.1086/283216) Crossref, Web of Science, Google Scholar - 8.
Murray KG . 1987 Selection for optimal fruit-crop size in bird-dispersed plants. Am. Nat. 129 , 18–31. (doi:10.1086/284620) Crossref, Web of Science, Google Scholar - 9.
Morán‐López T, Carlo TA, Amico G, Morales JM . 2018 Diet complementation as a frequency‐dependent mechanism conferring advantages to rare plants via dispersal. Funct. Ecol. 32 , 2310–2320. (doi:10.1111/1365-2435.13152) Crossref, Web of Science, Google Scholar - 10.
Blendinger PG . 2022 Nutrient balance and energy‐acquisition effectiveness: do birds adjust their fruit diet to achieve intake targets? Funct. Ecol. 36 , 2649–2660. (doi:10.1111/1365-2435.14164) Crossref, Google Scholar - 11.
Whelan CJ, Schmidt KA, Steele BB, Quinn WJ, Dilger S . 1998 Are bird-consumed fruits complementary resources? Oikos 83 , 195. (doi:10.2307/3546561) Crossref, Google Scholar - 12.
Quintero E, Pizo MA, Jordano P . 2020 Fruit resource provisioning for avian frugivores: the overlooked side of effectiveness in seed dispersal mutualisms. J. Ecol. 108 , 1358–1372. (doi:10.1111/1365-2745.13352) Crossref, Web of Science, Google Scholar - 13.
Morton ES . 1973 On the evolutionary advantages and disadvantages of fruit eating in tropical birds. Am. Nat. 107 , 8–22. (doi:10.1086/282813) Crossref, Google Scholar - 14.
Cipollini ML, Levey DJ . 1997 Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal. Am. Nat. 150 , 346–372. (doi:10.1086/286069) Crossref, PubMed, Web of Science, Google Scholar - 15.
Daniel Kissling W, Böhning–Gaese K, Jetz W . 2009 The global distribution of frugivory in birds. Glob. Ecol. Biogeogr. 18 , 150–162. (doi:10.1111/j.1466-8238.2008.00431.x) Crossref, Google Scholar - 16.
Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B . 2014 Defaunation in the anthropocene. Science 345 , 401–406. (doi:10.1126/science.1251817) Crossref, PubMed, Web of Science, Google Scholar - 17.
Wandrag EM, Dunham AE, Duncan RP, Rogers HS . 2017 Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings. Proc. Natl Acad. Sci. USA 114 , 10689–10694. (doi:10.1073/pnas.1709584114) Crossref, PubMed, Web of Science, Google Scholar - 18.
Bascompte J, Jordano P . 2007 Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38 , 567–593. (doi:10.1146/annurev.ecolsys.38.091206.095818) Crossref, Web of Science, Google Scholar - 19.
Camargo PHSA, Pizo MA, Brancalion PHS, Carlo TA . 2020 Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: Implications for restoration. J. Appl. Ecol. 57 , 2329–2339. (doi:10.1111/1365-2664.13697) Crossref, Web of Science, Google Scholar - 20.
Camargo PHSA, Carlo TA, Brancalion PHS, Pizo MA . 2022 Frugivore diversity increases evenness in the seed rain on deforested tropical landscapes. Oikos 2022 . (doi:10.1111/oik.08028) Crossref, PubMed, Web of Science, Google Scholar - 21.
Morán-López T . 2020 Can network metrics predict vulnerability and species roles in bird-dispersed plant communities? Not without behaviour. Ecol. Lett. 23 , 348–358. (doi:10.1111/ele.13439) Crossref, PubMed, Web of Science, Google Scholar - 22.
Howe HF, Vande Kerckhove GA . 1981 Removal of wild nutmeg (Virola surinamensis) crops by birds. Ecology 62 , 1093–1106. (doi:10.2307/1937007) Crossref, Web of Science, Google Scholar - 23.
Howe HF, De Steven D . 1979 Fruit production, migrant bird visitation, and seed dispersal of Guarea glabra in Panama. Oecologia 39 , 185–196. (doi:10.1007/BF00348067) Crossref, PubMed, Web of Science, Google Scholar - 24.
Carlo TA, Yang S . 2011 Network models of frugivory and seed dispersal: challenges and opportunities. Acta Oecol. 37 , 619–624. (doi:10.1016/j.actao.2011.08.001) Crossref, Web of Science, Google Scholar - 25.
Palacio FX, Valoy M, Bernacki F, Sánchez MS, Núñez-Montellano MG, Varela O, Ordano M . 2017 Bird fruit consumption results from the interaction between fruit-handling behaviour and fruit crop size. Ethol. Ecol. Evol. 29 , 24–37. (doi:10.1080/03949370.2015.1080195) Crossref, Web of Science, Google Scholar - 26.
Pizo MA, Morales JM, Ovaskainen O, Carlo TA . 2021 Frugivory specialization in birds and fruit chemistry structure mutualistic networks across the neotropics. Am. Nat. 197 , 236–249. (doi:10.1086/712381) Crossref, PubMed, Web of Science, Google Scholar - 27.
Acevedo-Quintero JF, Zamora-Abrego JG, García D . 2020 From structure to function in mutualistic interaction networks: topologically important frugivores have greater potential as seed dispersers. J. Anim. Ecol. 89 , 2181–2191. (doi:10.1111/1365-2656.13273) Crossref, PubMed, Web of Science, Google Scholar - 28.
Csárdi G, Nepusz T . 2006 The igraph software package for complex network research. Int. J. Comp. Syst. 1695 , 1–9. (doi:10.3389/fimmu.2022.862049) Google Scholar - 29.
Hadfield JD . 2010 MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Soft 33 , 1–22. (doi:10.18637/jss.v033.i02) Crossref, PubMed, Web of Science, Google Scholar - 30.
Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W . 2014 EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals. Ecology 95 , 2027–2027. (doi:10.1890/13-1917.1) Crossref, Google Scholar - 31.
Almeida-Neto M, Ulrich W . 2011 A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26 , 173–178. (doi:10.1016/j.envsoft.2010.08.003) Crossref, Web of Science, Google Scholar - 32.
Beckett SJ . 2016 Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 3 ,140536 . (doi:10.1098/rsos.140536) Link, Web of Science, Google Scholar - 33.
Dormann CF, Frund J, Bluthgen N, Gruber B . 2009 Indices, graphs and null models: analyzing bipartite ecological networks. Open J. Ecol. 2 , 7–24. (doi:10.2174/1874213000902010007) Crossref, Google Scholar - 34.
Dormann CF, Gruber B, Fründ J . 2008 Introducing the bipartite package: analysing ecological networks. R News 8 , 8–11. Google Scholar - 35.
R Core Team . 2023R: A language and environment for statistical computing . R Foundation for Statistical Computing. See https://www.R-project.org/. Google Scholar - 36.
Simmons BI, Sutherland WJ, Dicks LV, Albrecht J, Farwig N, García D, Jordano P, González-Varo JP . 2018 Moving from frugivory to seed dispersal: Incorporating the functional outcomes of interactions in plant–frugivore networks. J. Anim. Ecol. 87 , 995–1007. (doi:10.1111/1365-2656.12831) Crossref, PubMed, Web of Science, Google Scholar - 37.
Fricke EC, Simon MJ, Reagan KM, Levey DJ, Riffell JA, Carlo TA, Tewksbury JJ . 2013 When condition trumps location: seed consumption by fruit-eating birds removes pathogens and predator attractants. Ecol. Lett. 16 , 1031–1036. (doi:10.1111/ele.12134) Crossref, PubMed, Web of Science, Google Scholar - 38.
Levey DJ . 1988 Spatial and temporal variation in Costa Rcan fruit and fruit‐eating bird abundance. Ecol. Monogr. 58 , 251–269. (doi:10.2307/1942539) Crossref, Web of Science, Google Scholar - 39.
García D, Ortiz‐Pulido R . 2004 Patterns of resource tracking by avian frugivores at multiple spatial scales: two case studies on discordance among scales. Ecography 27 , 187–196. (doi:10.1111/j.0906-7590.2004.03751.x) Crossref, Web of Science, Google Scholar - 40.
Vergara-Tabares DL, Toledo M, García E, Peluc SI . 2018 Aliens will provide: avian responses to a new temporal resource offered by ornithocorous exotic shrubs. Oecologia 188 , 173–182. (doi:10.1007/s00442-018-4207-2) Crossref, PubMed, Web of Science, Google Scholar - 41.
Jordano P . 1995 Frugivore‐mediated selection on fruit and seed size: birds and St. Lucie’s Cherry, Prunus mahaleb. Ecology 76 , 2627–2639. (doi:10.2307/2265833) Crossref, Web of Science, Google Scholar - 42.
Blendinger PG, Villegas M . 2011 Crop size is more important than neighborhood fruit availability for fruit removal of Eugenia uniflora (Myrtaceae) by bird seed dispersers. Plant Ecol. 212 , 889–899. (doi:10.1007/s11258-010-9873-z) Crossref, Web of Science, Google Scholar - 43.
Morales JM, Rivarola MD, Amico G, Carlo TA . 2012 Neighborhood effects on seed dispersal by frugivores: testing theory with a mistletoe–marsupial system in Patagonia. Ecology 93 , 741–748. (doi:10.1890/11-0935.1) Crossref, PubMed, Web of Science, Google Scholar - 44.
Davidar P, Morton ES . 1986 The relationship between fruit crop sizes and fruit removal rates by birds. Ecology 67 , 262–265. (doi:10.2307/1938529) Crossref, Web of Science, Google Scholar - 45.
Carlo TA, Morales JM . 2008 Inequalities in fruit‐removal and seed dispersal: consequences of bird behaviour, neighbourhood density and landscape aggregation. J. Ecol. 96 , 609–618. (doi:10.1111/j.1365-2745.2008.01379.x) Crossref, Web of Science, Google Scholar - 46.
Côrtes MC, Uriarte M . 2013 Integrating frugivory and animal movement: a review of the evidence and implications for scaling seed dispersal. Biol. Rev. Camb. Philos. Soc. 88 , 255–272. (doi:10.1111/j.1469-185X.2012.00250.x) Crossref, PubMed, Web of Science, Google Scholar - 47.
Beyer HL, Haydon DT, Morales JM, Frair JL, Hebblewhite M, Mitchell M, Matthiopoulos J . 2010 The interpretation of habitat preference metrics under use-availability designs. Phil. Trans. R. Soc. B. 365 , 2245–2254. (doi:10.1098/rstb.2010.0083) Link, Web of Science, Google Scholar - 48.
Hanya G, Aiba S . 2010 Fruit fall in tropical and temperate forests: implications for frugivore diversity. Ecol. Res. 25 , 1081–1090. (doi:10.1007/s11284-010-0733-z) Crossref, Web of Science, Google Scholar - 49.
Holling CS . 1959 The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly. Can. Entomol. 91 , 293–320. (doi:10.4039/Ent91293-5) Crossref, Google Scholar - 50.
Morán‐López T, Carlo TA, Morales JM . 2018 The role of frugivory in plant diversity maintenance – a simulation approach. Ecography 41 , 24–31. (doi:10.1111/ecog.03220) Crossref, Web of Science, Google Scholar - 51.
Slocum MG . 2001 How tree species differ as recruitment foci in a tropical pasture. Ecology 82 , 2547–2559. (doi:10.1890/0012-9658(2001)082[2547:HTSDAR]2.0.CO;2) Crossref, Web of Science, Google Scholar - 52.
Jordano P, Bascompte J, Olesen JM . 2003 Invariant properties in coevolutionary networks of plant–animal interactions. Ecol. Lett. 6 , 69–81. (doi:10.1046/j.1461-0248.2003.00403.x) Crossref, Web of Science, Google Scholar - 53.
Schleuning M . 2012 Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr. Biol. 22 , 1925–1931. (doi:10.1016/j.cub.2012.08.015) Crossref, PubMed, Web of Science, Google Scholar - 54.
Vollstädt MGR . 2022 Plant–frugivore interactions across the Caribbean islands: modularity, invader complexes and the importance of generalist species. Div. Dis. 28 , 2361–2374. (doi:10.1111/ddi.13636) Crossref, Web of Science, Google Scholar - 55.
Raubenheimer D . 2011 Toward a quantitative nutritional ecology: the right-angled mixture triangle. Ecol. Monogr. 81 , 407–427. (doi:10.1890/10-1707.1) Crossref, Web of Science, Google Scholar - 56.
Carlo TA . 2024 Data from: Negative density-dependence characterize mutualistic interactions between birds and fruiting plants across latitudes. See https://github.com/BIOL450W/Frugivory.NDD. Link, Google Scholar - 57.
Carlo TA . 2024 Supplementary material from: Negative density-dependence characterize mutualistic interactions between birds and fruiting plants across latitudes. Figshare. (doi:10.6084/m9.figshare.c.7249516) Google Scholar